1 research outputs found

    Direct Detection of Multiple Acidic Proton Sites in Zeolite HZSM‑5

    No full text
    Direct observation of multiple reactive sites in the zeolite HZSM-5, a member of the MFI family of zeolite structures, contradicts the traditional view of only one type of active protonic species in industrially important zeolites. In addition to the well-known Brönsted acid site proton, two other protonic species undergo room-temperature hydrogen–deuterium exchange with an alkane hydrocarbon reagent, including one zeolite moiety characterized by a broad <sup>1</sup>H chemical shift at ca. 12–15 ppm that is reported here for the first time. Although the ca. 13 ppm chemical shift value is consistent with computational predictions from the literature for a surface-stabilized hydroxonium ion in a zeolite, data suggest that the signal does not arise from hydroxonium species but rather from hydroxyls on extra-lattice aluminol species proximate to Brönsted lattice sites, i.e., a small population of highly deshielded acid sites. Double-resonance experiments show that this species is proximate to Al atoms, similar to the Brönsted acid site proton. These sites can be removed by appropriate postsynthesis chemical treatment, yielding a catalyst with reduced activity for isotopic H/D exchange reactions. Additionally, other extra-lattice aluminum hydroxyl groups previously discussed in the literature but whose protons were considered unreactive are also shown for the first time to react with hydrocarbon probe molecules. Two-dimensional exchange NMR reveals direct proton exchange between the Brönsted site and these two types of extra-lattice Al–OH species, and it also reveals unexpected proton exchange between extra-lattice Al–OH species and an alkane reagent
    corecore