21 research outputs found

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Sampling-Based Methods for Factored Task and Motion Planning

    Full text link
    This paper presents a general-purpose formulation of a large class of discrete-time planning problems, with hybrid state and control-spaces, as factored transition systems. Factoring allows state transitions to be described as the intersection of several constraints each affecting a subset of the state and control variables. Robotic manipulation problems with many movable objects involve constraints that only affect several variables at a time and therefore exhibit large amounts of factoring. We develop a theoretical framework for solving factored transition systems with sampling-based algorithms. The framework characterizes conditions on the submanifold in which solutions lie, leading to a characterization of robust feasibility that incorporates dimensionality-reducing constraints. It then connects those conditions to corresponding conditional samplers that can be composed to produce values on this submanifold. We present two domain-independent, probabilistically complete planning algorithms that take, as input, a set of conditional samplers. We demonstrate the empirical efficiency of these algorithms on a set of challenging task and motion planning problems involving picking, placing, and pushing

    PDDLStream: Integrating Symbolic Planners and Blackbox Samplers via Optimistic Adaptive Planning

    Full text link
    Many planning applications involve complex relationships defined on high-dimensional, continuous variables. For example, robotic manipulation requires planning with kinematic, collision, visibility, and motion constraints involving robot configurations, object poses, and robot trajectories. These constraints typically require specialized procedures to sample satisfying values. We extend PDDL to support a generic, declarative specification for these procedures that treats their implementation as black boxes. We provide domain-independent algorithms that reduce PDDLStream problems to a sequence of finite PDDL problems. We also introduce an algorithm that dynamically balances exploring new candidate plans and exploiting existing ones. This enables the algorithm to greedily search the space of parameter bindings to more quickly solve tightly-constrained problems as well as locally optimize to produce low-cost solutions. We evaluate our algorithms on three simulated robotic planning domains as well as several real-world robotic tasks.Comment: International Conference on Automated Planning and Scheduling (ICAPS) 202

    Active model learning and diverse action sampling for task and motion planning

    Full text link
    The objective of this work is to augment the basic abilities of a robot by learning to use new sensorimotor primitives to enable the solution of complex long-horizon problems. Solving long-horizon problems in complex domains requires flexible generative planning that can combine primitive abilities in novel combinations to solve problems as they arise in the world. In order to plan to combine primitive actions, we must have models of the preconditions and effects of those actions: under what circumstances will executing this primitive achieve some particular effect in the world? We use, and develop novel improvements on, state-of-the-art methods for active learning and sampling. We use Gaussian process methods for learning the conditions of operator effectiveness from small numbers of expensive training examples collected by experimentation on a robot. We develop adaptive sampling methods for generating diverse elements of continuous sets (such as robot configurations and object poses) during planning for solving a new task, so that planning is as efficient as possible. We demonstrate these methods in an integrated system, combining newly learned models with an efficient continuous-space robot task and motion planner to learn to solve long horizon problems more efficiently than was previously possible.Comment: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain. https://www.youtube.com/playlist?list=PLoWhBFPMfSzDbc8CYelsbHZa1d3uz-W_

    Sequence-Based Plan Feasibility Prediction for Efficient Task and Motion Planning

    Full text link
    Robots planning long-horizon behavior in complex environments must be able to quickly reason about the impact of the environment's geometry on what plans are feasible, i.e., whether there exist action parameter values that satisfy all constraints on a candidate plan. In tasks involving articulated and movable obstacles, typical Task and Motion Planning (TAMP) algorithms spend most of their runtime attempting to solve unsolvable constraint satisfaction problems imposed by infeasible plan skeletons. We developed a novel Transformer-based architecture, PIGINet, that predicts plan feasibility based on the initial state, goal, and candidate plans, fusing image and text embeddings with state features. The model sorts the plan skeletons produced by a TAMP planner according to the predicted satisfiability likelihoods. We evaluate the runtime of our learning-enabled TAMP algorithm on several distributions of kitchen rearrangement problems, comparing its performance to that of non-learning baselines and algorithm ablations. Our experiments show that PIGINet substantially improves planning efficiency, cutting down runtime by 80% on average on pick-and-place problems with articulated obstacles. It also achieves zero-shot generalization to problems with unseen object categories thanks to its visual encoding of objects

    FFRob: An Efficient Heuristic for Task and Motion Planning

    Get PDF
    Manipulation problemsinvolvingmany objects present substantial challenges for motion planning algorithms due to the high dimensionality and multi-modality of the search space. Symbolic task planners can efficiently construct plans involving many entities but cannot incorporate the constraints from geometry and kinematics. In this paper, we show how to extend the heuristic ideas from one of the most successful symbolic planners in recent years, the FastForward (FF) planner, to motion planning, and to compute it efficiently. We use a multi-query roadmap structure that can be conditionalized to model different placements of movable objects. The resulting tightly integrated planner is simple and performs efficiently in a collection of tasks involving manipulation of many objects.National Science Foundation (U.S.) (Grant No. 019868)United States. Office of Naval Research. Multidisciplinary University Research Initiative (grant N00014-09-1-1051)United States. Air Force. Office of Scientific Research (grant AOARD-104135)Singapore. Ministry of Educatio

    Scalable and Probabilistically Complete Planning for Robotic Spatial Extrusion

    Full text link
    There is increasing demand for automated systems that can fabricate 3D structures. Robotic spatial extrusion has become an attractive alternative to traditional layer-based 3D printing due to a manipulator's flexibility to print large, directionally-dependent structures. However, existing extrusion planning algorithms require a substantial amount of human input, do not scale to large instances, and lack theoretical guarantees. In this work, we present a rigorous formalization of robotic spatial extrusion planning and provide several efficient and probabilistically complete planning algorithms. The key planning challenge is, throughout the printing process, satisfying both stiffness constraints that limit the deformation of the structure and geometric constraints that ensure the robot does not collide with the structure. We show that, although these constraints often conflict with each other, a greedy backward state-space search guided by a stiffness-aware heuristic is able to successfully balance both constraints. We empirically compare our methods on a benchmark of over 40 simulated extrusion problems. Finally, we apply our approach to 3 real-world extrusion problems

    DiMSam: Diffusion Models as Samplers for Task and Motion Planning under Partial Observability

    Full text link
    Task and Motion Planning (TAMP) approaches are effective at planning long-horizon autonomous robot manipulation. However, because they require a planning model, it can be difficult to apply them to domains where the environment and its dynamics are not fully known. We propose to overcome these limitations by leveraging deep generative modeling, specifically diffusion models, to learn constraints and samplers that capture these difficult-to-engineer aspects of the planning model. These learned samplers are composed and combined within a TAMP solver in order to find action parameter values jointly that satisfy the constraints along a plan. To tractably make predictions for unseen objects in the environment, we define these samplers on low-dimensional learned latent embeddings of changing object state. We evaluate our approach in an articulated object manipulation domain and show how the combination of classical TAMP, generative learning, and latent embeddings enables long-horizon constraint-based reasoning
    corecore