463 research outputs found

    Genetic and other factors determining mannose-binding lectin levels in American Indians: the Strong Heart Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mannose-binding lectin (MBL) forms an integral part of the innate immune system. Persistent, subclinical infections and chronic inflammatory states are hypothesized to contribute to the pathogenesis of atherosclerosis. MBL gene (<it>MBL2</it>) variants with between 12 to 25% allele frequency in Caucasian and other populations, result in markedly reduced expression of functional protein. Prospective epidemiologic studies, including a nested, case-control study from the present population, have demonstrated the ability of <it>MBL2 </it>genotypes to predict complications of atherosclerosis,. The genetic control of <it>MBL2 </it>expression is complex and genetic background effects in specific populations are largely unknown.</p> <p>Methods</p> <p>The Strong Heart Study is a longitudinal, cohort study of cardiovascular disease among American Indians. A subset of individuals genotyped for the above mentioned case-control study were selected for analysis of circulating MBL levels by double sandwich ELISA method. Mean MBL levels were compared between genotypic groups and multivariate regression was used to determine other independent factors influencing <it>MBL2 </it>expression.</p> <p>Results</p> <p>Our results confirm the effects of variant structural (B, C, and D) and promoter (H and Y) alleles that have been seen in other populations. In addition, MBL levels were found to be positively associated with male gender and hemoglobin A1c levels, but inversely related to triglyceride levels. Correlation was not found between MBL and other markers of inflammation.</p> <p>Conclusion</p> <p>New data is presented concerning the effects of known genetic variants on MBL levels in an American Indian population, as well as the relationship of <it>MBL2 </it>expression to clinical and environmental factors, including inflammatory markers.</p

    Association of Ficolin-3 with Severity and Outcome of Chronic Heart Failure

    Get PDF
    BACKGROUND: Inflammatory mechanisms involving complement activation has been shown to take part in the pathophysiology of congestive heart failure, but the initiating mechanisms are unknown. We hypothesized that the main initiator molecules of the lectin complement pathway mannose-binding lectin (MBL), ficolin-2 and ficolin-3 were related to disease severity and outcome in chronic heart failure. METHODS AND RESULTS: MBL, ficolin-2 and ficolin-3 plasma concentrations were determined in two consecutive cohorts comprising 190 patients from Hungary and 183 patients from Norway as well as controls. Disease severity and clinical parameters were determined at baseline, and all-cause mortality was registered after 5-years follow-up. In univariate analysis a low level of ficolin-3, but not that of MBL or ficolin-2, was significantly associated with advanced heart failure (New York Heart Association Class IV, p<0.001 for both cohorts) and showed inverse correlation with B- type natriuretic peptide (BNP) levels (r = -0.609, p<0.001 and r = -0.467, p<0.001, respectively). In multivariable Cox regression analysis, adjusted for age, gender and BNP, decreased plasma ficolin-3 was a significant predictor of mortality (HR 1.368, 95% CI 1.052-6.210; and HR 1.426, 95% CI 1.013-2.008, respectively). Low ficolin-3 levels were associated with increased complement activation product C3a and correspondingly decreased concentrations of complement factor C3. CONCLUSIONS: This study provides evidence for an association of low ficolin-3 levels with advanced heart failure. Concordant results from two cohorts show that low levels of ficolin-3 are associated with advanced heart failure and outcome. The decrease of ficolin-3 was associated with increased complement activation

    High rate of in-stent restenosis after coronary intervention in carriers of the mutant mannose-binding lectin allele

    Get PDF
    BACKGROUND: In-stent restenosis occurs in 10-30% of patients following bare metal stent (BMS) implantation and has various risk factors. Mannose-binding lectin (MBL) is known to have effect on the progression of atherosclerosis. Single nucleotide polymorphisms (SNP) of the MBL2 gene intron 1 (codon 52, 54, 57) are known to modulate the bioavailability of the MBL protein. Our aim was to identify the association of these polymorphisms of the MBL gene in the occurrence of in-stent restenosis after coronary artery bare metal stent implantation. METHODS: In a non-randomized prospective study venous blood samples were collected after recoronarography from 225 patients with prior BMS implantation. Patients were assigned to diffuse restenosis group and control group based on the result of the coronarography. MBL genotypes were determined using quantitative real-time PCR. Proportion of different genotypes was compared and adjusted with traditional risk factors using multivariate logistic regression. RESULTS: Average follow-up time was 1.0 (+ - 1.4) year in the diffuse restenosis group (N = 117) and 2.7 (+ - 2.5) years in the control group (N = 108). The age, gender distribution and risk status was not different between study groups. Proportion of the MBL variant genotype was 26.8% (29 vs. 79 normal homozygous) in the control group and 39.3% (46 vs. 71 normal homozygous) in the restenosis group (p = 0.04). In multivariate analysis the mutant allele was an independent risk factor (OR = 1.96, p = 0.03) of in-stent restenosis. CONCLUSIONS: MBL polymorphisms are associated with higher incidence of development of coronary in-stent restenosis. The attenuated protein function in the mutant allelic genotype may represent the underlying mechanism

    Mannose-binding lectin genotypes: lack of association with susceptibility to thoracic empyema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of the innate immune protein mannose-binding lectin (MBL) in host defence against severe respiratory infection remains controversial. Thoracic empyema is a suppurative lung infection that arises as a major complication of pneumonia and is associated with a significant mortality. Although the pathogenesis of thoracic empyema is poorly understood, genetic susceptibility loci for this condition have recently been identified. The possible role of MBL genotypic deficiency in susceptibility to thoracic empyema has not previously been reported.</p> <p>Methods</p> <p>To investigate this further we compared the frequencies of the six functional <it>MBL </it>polymorphisms in 170 European individuals with thoracic empyema and 225 healthy control individuals.</p> <p>Results</p> <p>No overall association was observed between MBL genotypic deficiency and susceptibility to thoracic empyema (2 × 2 Chi square = 0.02, <it>P </it>= 0.87). Furthermore, no association was seen between MBL deficiency and susceptibility to the Gram-positive or pneumococcal empyema subgroups. MBL genotypic deficiency did not associate with progression to death or requirement for surgery.</p> <p>Conclusions</p> <p>Our results suggest that MBL genotypic deficiency does not associate with susceptibility to thoracic empyema in humans.</p

    Functional Analysis of Ficolin-3 Mediated Complement Activation

    Get PDF
    The recognition molecules of the lectin complement pathway are mannose-binding lectin and Ficolin -1, -2 and -3. Recently deficiency of Ficolin-3 was found to be associated with life threatening infections. Thus, we aimed to develop a functional method based on the ELISA platform for evaluating Ficolin-3 mediated complement activation that could be applicable for research and clinical use. Bovine serum albumin (BSA) was acetylated (acBSA) and chosen as a solid phase ligand for Ficolins in microtiter wells. Binding of Ficolins on acBSA was evaluated, as was functional complement activation assessed by C4, C3 and terminal complement complex (TCC) deposition. Serum Ficolin-3 bound to acBSA in a calcium dependent manner, while only minimal binding of Ficolin-2 and no binding of Ficolin-1 were observed. No binding to normal BSA was seen for any of the Ficolins. Serum C4, C3 and TCC deposition on acBSA were dependent only on Ficolin-3 in appropriate serum dilutions. Deposition of down stream complement components correlated highly significantly with the serum concentration of Ficolin-3 but not with Ficolin-2 in healthy donors. To make the assay robust for clinical use a chemical compound was applied to the samples that inhibited interference from the classical pathway due to the presence of anti-BSA antibodies in some sera. We describe a novel functional method for measuring complement activation mediated by Ficolin-3 in human serum up to the formation of TCC. The assay provides the possibility to diagnose functional and genetic defects of Ficolin-3 and down stream components in the lectin complement pathway

    MBL2 and Hepatitis C Virus Infection among Injection Drug Users

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic variations in <it>MBL2 </it>that reduce circulating levels and alter functional properties of the mannose binding lectin (MBL) have been associated with many autoimmune and infectious diseases. We examined whether <it>MBL2 </it>variants influence the outcome of hepatitis C virus (HCV) infection.</p> <p>Methods</p> <p>Participants were enrolled in the Urban Health Study of San Francisco Bay area injection drug users (IDU) during 1998 through 2000. Study subjects who had a positive test for HCV antibody were eligible for the current study. Participants who were positive for HCV RNA were frequency matched to those who were negative for HCV RNA on the basis of ethnicity and duration of IDU. Genotyping was performed for 15 single nucleotide polymorphisms in <it>MBL2</it>. Statistical analyses of European American and African American participants were conducted separately.</p> <p>Results</p> <p>The analysis included 198 study subjects who were positive for HCV antibody, but negative for HCV RNA, and 654 IDUs who were positive for both antibody and virus. There was no significant association between any of the genetic variants that cause MBL deficiency and the presence of HCV RNA. Unexpectedly, the <it>MBL2 </it>-289X promoter genotype, which causes MBL deficiency, was over-represented among European Americans who were HCV RNA negative (OR = 1.65, 95% CI 1.05–2.58), although not among the African Americans.</p> <p>Conclusion</p> <p>This study found no association between genetic variants that cause MBL deficiency and the presence of HCV RNA. The observation that <it>MBL2 </it>-289X was associated with the absence of HCV RNA in European Americans requires validation.</p

    Allelic Lineages of the Ficolin Genes (FCNs) Are Passed from Ancestral to Descendant Primates

    Get PDF
    The ficolins recognize carbohydrates and acetylated compounds on microorganisms and dying host cells and are able to activate the lectin pathway of the complement system. In humans, three ficolin genes have been identified: FCN1, FCN2 and FCN3, which encode ficolin-1, ficolin-2 and ficolin-3, respectively. Rodents have only two ficolins designated ficolin-A and ficolin-B that are closely related to human ficolin-1, while the rodent FCN3 orthologue is a pseudogene. Ficolin-2 and ficolin-3 have so far only been observed in humans. Thus, we performed a systematic investigation of the FCN genes in non-human primates. The exons and intron-exon boundaries of the FCN1-3 genes were sequenced in the following primate species: chimpanzee, gorilla, orangutan, rhesus macaque, cynomolgus macaque, baboon and common marmoset. We found that the exon organisation of the FCN genes was very similar between all the non-human primates and the human FCN genes. Several variations in the FCN genes were found in more than one primate specie suggesting that they were carried from one species to another including humans. The amino acid diversity of the ficolins among human and non-human primate species was estimated by calculating the Shannon entropy revealing that all three proteins are generally highly conserved. Ficolin-1 and ficolin-2 showed the highest diversity, whereas ficolin-3 was more conserved. Ficolin-2 and ficolin-3 were present in non-human primate sera with the same characteristic oligomeric structures as seen in human serum. Taken together all the FCN genes show the same characteristics in lower and higher primates. The existence of trans-species polymorphisms suggests that different FCN allelic lineages may be passed from ancestral to descendant species

    Synthetic Oligodeoxynucleotide CpG Motifs Activate Human Complement through Their Backbone Structure and Induce Complement-Dependent Cytokine Release

    Get PDF
    Bacterial and mitochondrial DNA, sharing an evolutionary origin, act as danger-associated molecular patterns in infectious and sterile inflammation. They both contain immunomodulatory CpG motifs. Interactions between CpG motifs and the complement system are sparsely described, and mechanisms of complement activation by CpG remain unclear. Lepirudin-anticoagulated human whole blood and plasma were incubated with increasing concentrations of three classes of synthetic CpGs: CpG-A, -B, and -C oligodeoxynucleotides and their GpC sequence controls. Complement activation products were analyzed by immunoassays. Cytokine levels were determined via 27-plex beads-based immunoassay, and CpG interactions with individual complement proteins were evaluated using magnetic beads coated with CpG-B. In whole blood and plasma, CpG-B and CpG-C (p 0.8 for all), led to time- and dose-dependent increase of soluble C5b-9, the alternative complement convertase C3bBbP, and the C3 cleavage product C3bc. GpC-A, -B, and -C changed soluble fluid-phase C5b-9, C3bBbP, and C3bc to the same extent as CpG-A, -B, and -C, indicating a DNA backbone–dependent effect. Dose-dependent CpG-B binding was found to C1q (r = 0.83; p = 0.006) and factor H (r = 0.93; p < 0.001). The stimulatory complement effect was partly preserved in C2-deficient plasma and completely preserved in MASP-2–deficient serum. CpG-B increased levels of IL-1β, IL-2, IL-6, IL-8, MCP-1, and TNF in whole blood, which were completely abolished by inhibition of C5 and C5aR1 (p < 0.05 for all). In conclusion, synthetic analogs of bacterial and mitochondrial DNA activate the complement system via the DNA backbone. We suggest that CpG-B interacts directly with classical and alternative pathway components, resulting in complement-C5aR1–dependent cytokine release
    corecore