373 research outputs found

    On Some Operators Involving Hadamard Derivatives

    Full text link
    In this paper we introduce a novel Mittag--Leffler-type function and study its properties in relation to some integro-differential operators involving Hadamard fractional derivatives or Hyper-Bessel-type operators. We discuss then the utility of these results to solve some integro-differential equations involving these operators by means of operational methods. We show the advantage of our approach through some examples. Among these, an application to a modified Lamb--Bateman integral equation is presented

    Analytic solutions of fractional differential equations by operational methods

    Full text link
    We describe a general operational method that can be used in the analysis of fractional initial and boundary value problems with additional analytic conditions. As an example, we derive analytic solutions of some fractional generalisation of differential equations of mathematical physics. Fractionality is obtained by substituting the ordinary integer-order derivative with the Caputo fractional derivative. Furthermore, operational relations between ordinary and fractional differentiation are shown and discussed in detail. Finally, a last example concerns the application of the method to the study of a fractional Poisson process

    Fractional calculus modelling for unsteady unidirectional flow of incompressible fluids with time-dependent viscosity

    Full text link
    In this note we analyze a model for a unidirectional unsteady flow of a viscous incompressible fluid with time dependent viscosity. A possible way to take into account such behaviour is to introduce a memory formalism, including thus the time dependent viscosity by using an integro-differential term and therefore generalizing the classical equation of a Newtonian viscous fluid. A possible useful choice, in this framework, is to use a rheology based on stress/strain relation generalized by fractional calculus modelling. This is a model that can be used in applied problems, taking into account a power law time variability of the viscosity coefficient. We find analytic solutions of initial value problems in an unbounded and bounded domain. Furthermore, we discuss the explicit solution in a meaningful particular case

    Correlated fractional counting processes on a finite time interval

    Full text link
    We present some correlated fractional counting processes on a finite time interval. This will be done by considering a slight generalization of the processes in Borges et al. (2012). The main case concerns a class of space-time fractional Poisson processes and, when the correlation parameter is equal to zero, the univariate distributions coincide with the ones of the space-time fractional Poisson process in Orsingher and Polito (2012). On the other hand, when we consider the time fractional Poisson process, the multivariate finite dimensional distributions are different from the ones presented for the renewal process in Politi et al. (2011). Another case concerns a class of fractional negative binomial processes

    A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus

    Full text link
    We present a new approach based on linear integro-differential operators with logarithmic kernel related to the Hadamard fractional calculus in order to generalize, by a parameter ν∈(0,1]\nu \in (0,1], the logarithmic creep law known in rheology as Lomnitz law (obtained for ν=1\nu=1). We derive the constitutive stress-strain relation of this generalized model in a form that couples memory effects and time-varying viscosity. Then, based on the hereditary theory of linear viscoelasticity, we also derive the corresponding relaxation function by solving numerically a Volterra integral equation of the second kind. So doing we provide a full characterization of the new model both in creep and in relaxation representation, where the slow varying functions of logarithmic type play a fundamental role as required in processes of ultra slow kinetics.Comment: 15 pages, 2 figures, to appear in Chaos, Solitons and Fractals (2017

    Fractional Klein-Gordon equation for linear dispersive phenomena: analytical methods and applications

    Full text link
    In this paper we discuss some exact results related to the fractional Klein--Gordon equation involving fractional powers of the D'Alembert operator. By means of a space-time transformation, we reduce the fractional Klein--Gordon equation to a fractional hyper-Bessel-type equation. We find an exact analytic solution by using the McBride theory of fractional powers of hyper-Bessel operators. A discussion of these results within the framework of linear dispersive wave equations is provided. We also present exact solutions of the fractional Klein-Gordon equation in the higher dimensional cases. Finally, we suggest a method of finding travelling wave solutions of the nonlinear fractional Klein-Gordon equation with power law nonlinearities

    Fractional Klein-Gordon equations and related stochastic processes

    Full text link
    This paper presents finite-velocity random motions driven by fractional Klein-Gordon equations of order α∈(0,1]\alpha \in (0,1]. A key tool in the analysis is played by the McBride's theory which converts fractional hyper-Bessel operators into Erdelyi-Kober integral operators. Special attention is payed to the fractional telegraph process whose space-dependent distribution solves a non-homogeneous fractional Klein-Gordon equation. The distribution of the fractional telegraph process for α=1\alpha = 1 coincides with that of the classical telegraph process and its driving equation converts into the homogeneous Klein-Gordon equation. Fractional planar random motions at finite velocity are also investigated, the corresponding distributions obtained as well as the explicit form of the governing equations. Fractionality is reflected into the underlying random motion because in each time interval a binomial number of deviations B(n,α)B(n,\alpha) (with uniformly-distributed orientation) are considered. The parameter nn of B(n,α)B(n,\alpha) is itself a random variable with fractional Poisson distribution, so that fractionality acts as a subsampling of the changes of directions. Finally the behaviour of each coordinate of the planar motion is examined and the corresponding densities obtained. Extensions to NN-dimensional fractional random flights are envisaged as well as the fractional counterpart of the Euler-Poisson-Darboux equation to which our theory applies
    • …
    corecore