55 research outputs found

    Drosophila Lethal Giant Larvae Neoplastic Mutant as a Genetic Tool for Cancer Modeling

    Get PDF
    Drosophila lethal giant larvae (lgl) is a tumour suppressor gene whose function in establishing apical-basal cell polarity as well as in exerting proliferation control in epithelial tissues is conserved between flies and mammals. Individuals bearing lgl null mutations show a gradual loss of tissue architecture and an extended larval life in which cell proliferation never ceases and no differentiation occurs, resulting in prepupal lethality. When tissues from those individuals are transplanted into adult normal recipients, a subset of cells, possibly the cancer stem units, are again able to proliferate and give rise to metastases which migrate to distant sites killing the host. This phenotype closely resembles that of mammalian epithelial cancers, in which loss of cell polarity is one of the hallmarks of a malignant, metastatic behaviour associated with poor prognosis. Lgl protein shares with its human counterpart Human giant larvae-1 (Hugl-1) significant stretches of sequence similarity that we demonstrated to translate into a complete functional conservation, pointing out a role in cell proliferation control and tumorigenesis also for the human homologue. The functional conservation and the power of fly genetics, that allows the researcher to manipulate the fly genome at a level of precision that exceeds that of any other multicellular genetic system, make this Drosophila mutant a very suitable model in which to investigate the mechanisms underlying epithelial tumour formation, progression and metastatisation. In this review, we will summarise the results obtained in these later years using this model for the study of cancer biology. Moreover, we will discuss how recent advances in developmental genetics techniques have succeeded in enhancing the similarities between fly and human tumorigenesis, giving Drosophila a pivotal role in the study of such a complex genetic disease

    The tumor suppressor gene fat modulates the EGFR-mediated proliferation control in the imaginal tissues of Drosophila melanogaster

    Get PDF
    Molecules involved in cell adhesion can regulate both early signal transduction events, triggered by soluble factors, and downstream events involved in cell cycle progression. Correct integration of these signals allows appropriate cellular growth, differentiation and ultimately tissue morphogenesis, but incorrect interpretation contributes to pathologies such as tumor growth. The Fat cadherin is a tumor suppressor protein required in Drosophila for epithelial morphogenesis, proliferation control and epithelial planar polarization, and its loss results in a hyperplastic growth of imaginal tissues. While several molecular events have been characterized through which fat participates in the establishment of the epithelial planar polarity, little is known about mechanisms underlying fat-mediated control of cell proliferation. Here we provide evidence that fat specifically cooperates with the epidermal growth factor receptor (EGFR) pathway in controlling cell proliferation in developing imaginal epithelia. Hyperplastic larval and adult fat structures indeed undergo an amazing, synergistic enlargement following to EGFR oversignalling. We further show that such a strong functional interaction occurs downstream of MAPK activation through the transcriptional regulation of genes involved in the EGFR nuclear signalling. Considering that fat mutation shows di per se a hyperplastic phenotype, we suggest a model in which fat acts in parallel to EGFR pathway in transducing different cell communication signals: furthermore its function is requested downstream of MAPK for a correct rendering of the growth signals converging to the epidermal growth factor receptor. (C) 2004 Elsevier Ireland Ltd. All rights reserved

    Functional dissection of the Drosophila Kallmann's syndrome protein DmKal-1

    Get PDF
    BACKGROUND: Anosmin-1, the protein implicated in the X-linked Kallmann's syndrome, plays a role in axon outgrowth and branching but also in epithelial morphogenesis. The molecular mechanism of its action is, however, widely unknown. Anosmin-1 is an extracellular protein which contains a cysteine-rich region, a whey acidic protein (WAP) domain homologous to some serine protease inhibitors, and four fibronectin-like type III (FnIII) repeats. Drosophila melanogaster Kal-1 (DmKal-1) has the same protein structure with minor differences, the most important of which is the presence of only two FnIII repeats and a C-terminal region showing a low similarity with the third and the fourth human FnIII repeats. We present a structure-function analysis of the different DmKal-1 domains, including a predicted heparan-sulfate binding site. RESULTS: This study was performed overexpressing wild type DmKal-1 and a series of deletion and point mutation proteins in two different tissues: the cephalopharyngeal skeleton of the embryo and the wing disc. The overexpression of DmKal-1 in the cephalopharyngeal skeleton induced dosage-sensitive structural defects, and we used these phenotypes to perform a structure-function dissection of the protein domains. The reproduction of two deletions found in Kallmann's Syndrome patients determined a complete loss of function, whereas point mutations induced only minor alterations in the activity of the protein. Overexpression of the mutant proteins in the wing disc reveals that the functional relevance of the different DmKal-1 domains is dependent on the extracellular context. CONCLUSION: We suggest that the role played by the various protein domains differs in different extracellular contexts. This might explain why the same mutation analyzed in different tissues or in different cell culture lines often gives opposite phenotypes. These analyses also suggest that the FnIII repeats have a main and specific role, while the WAP domain might have only a modulator role, strictly connected to that of the fibronectins

    Isolation of polymorphic microsatellite loci from the European anchovy Engraulis encrasicolus

    No full text
    The European anchovy (Engraulis encrasicolus L., Engraulidae) is a widely spread fish resource which is overexploited along its area of distribution. A proper knowledge of the population genetic structure of this fish species is crucial to allow a sustainable management of fishery stocks. We developed five polymorphic microsatellite loci (expected heterozygosity per locus ranging from 0.46 to 0.97) for E. encrasicolus. These genetic markers can be applied to define the population genetic structure of European anchovy

    Comparative analysis of AFLP and SSRs efficiency in resolving population genetic structure of Mediterranean Solea vulgaris

    No full text
    The performance of different molecular markers in the assessment of population structure was tested using samples of Solea vulgaris collected in the Mediterranean within and outside the hypothetical dispersal ability of the species. A total of 172 individuals belonging to four population samples were analysed using 15 microsatellites [simple sequence repeats (SSRs)] and 153 amplified fragment length polymorphisms (AFLPs). Considering the global qualitative patterns, we found a correlation between SSRs and AFLPs in detecting genetic differentiation among samples. However, on a small geographical scale, AFLPs were able to discriminate individuals from neighbouring populations whereas SSRs were not, and the percentage of individuals correctly assigned to their population of origin was higher with AFLPs than with SSRs. The high number of loci analysed with the AFLP technique could increase the probability to include outlier loci in the analysis; however, the neutrality test performed on our data set did not show evidence of selection acting on the S. vulgaris samples. Even if the choice of the molecular marker depends mainly on the biological question to be addressed, the higher power of discrimination and the comparative technical ease of obtaining data from AFLPs with respect to SSRs suggest the use of AFLPs for many population genetics studies

    Microsatellite analysis of red mullet Mullus barbatus (Perciformes, Mullidae) reveals the isolation of the Adriatic Basin in the Mediterranean Sea

    No full text
    The red mullet Mullus barbatus is commercially one of the most important demersal fish resources in the Mediterranean. Molecular data on its genetic population structure throughout the Mediterranean are reported. Six microsatellite loci displayed a high degree of expected heterozygosity and a high allele number per locus. The Hardy–Weinberg equilibrium test revealed an overall tendency towards heterozygote deficiency, probably caused by the admixture of various demes. Population differentiation was assessed by analysis of molecular variance (AMOVA) and Bayesian analysis. AMOVA showed that most of the variation was within the population, but the mean value of FST was significant, indicating genetic differentiation among the samples analysed. This differentiation is primarily attributable to the isolation of the Adriatic samples and partly to a weaker substructuring of the populations in the Gulf of Lions, Tyrrhenian Sea, Strait of Sicily, and Ionian Sea. Bayesian analysis also revealed genetic differentiation among the samples analysed, identifying two genetic clusters. The restricted gene flow from and to the Adriatic, also recorded for other fish species, most likely reflects the environmental separation of the Adriatic and suggests that management protocols for the red mullet in the Mediterranean should be revisited
    • …
    corecore