333 research outputs found

    Medium corrections to the CP-violating parameter in leptogenesis

    Full text link
    In two recent papers, arXiv:0909.1559 and arXiv:0911.4122, it has been demonstrated that one can obtain quantum corrected Boltzmann kinetic equations for leptogenesis using a top-down approach based on the Schwinger-Keldysh/Kadanoff-Baym formalism. These "Boltzmann-like" equations are similar to the ones obtained in the conventional bottom-up approach but differ in important details. In particular there is a discrepancy between the CP-violating parameter obtained in the first-principle derivation and in the framework of thermal field theory. Here we demonstrate that the two approaches can be reconciled if causal n-point functions are used in the thermal field theory approach. The new result for the medium correction to the CP-violating parameter is qualitatively different from the conventional one. The analogy to a toy model considered earlier enables us to write down consistent quantum corrected Boltzmann equations for thermal leptogenesis in the Standard Model (supplemented by three right-handed neutrinos) which include quantum statistical terms and medium corrected expressions for the CP-violating parameter.Comment: 13 pages, 9 figure

    Systematic approach to leptogenesis in nonequilibrium QFT: self-energy contribution to the CP-violating parameter

    Full text link
    In the baryogenesis via leptogenesis scenario the self-energy contribution to the CP-violating parameter plays a very important role. Here, we calculate it in a simple toy model of leptogenesis using the Schwinger-Keldysh/Kadanoff-Baym formalism as starting point. We show that the formalism is free of the double-counting problem typical for the canonical Boltzmann approach. Within the toy model, medium effects increase the CP-violating parameter. In contrast to results obtained earlier in the framework of thermal field theory, the medium corrections are linear in the particle number densities. In the resonant regime quantum corrections lead to modified expressions for the CP-violating parameter and for the decay width. Most notably, in the maximal resonant regime the Boltzmann picture breaks down and an analysis in the full Kadanoff-Baym formalism is required.Comment: 28 pages, 14 figure

    Particle Physics and Dark Energy: Beyond Classical Dynamics

    No full text
    In this work, quantum corrections to classical equations of motion are investigated for dynamical models of dark energy featuring a time-evolving quintessence scalar field. Employing effective quantum field theory, the robustness of tracker quintessence potentials against quantum corrections as well as their impact on cosmological observables are discussed. Furthermore, it is demonstrated that a rolling quintessence field can also play an important role for baryogenesis in the early universe. The macroscopic time-evolution of scalar quantum fields can be described from first principles within nonequilibrium quantum field theory based on Kadanoff-Baym equations derived from the 2PI effective action. A framework for the nonperturbative renormalization of Kadanoff-Baym equations is provided. Renormalized Kadanoff-Baym equations are proposed and their finiteness is shown for a special case

    B-L-symmetric Baryogenesis with Leptonic Quintessence

    Get PDF
    We discuss a toy model where baryogenesis and cosmic acceleration are driven by a leptonic quintessence field coupled to the standard model sector via a massive mediating scalar field. It does not require the introduction of B-L-violating interactions below the inflationary scale. Instead, a B-L-asymmetry is stored in the quintessence field, which compensates for the corresponding observed baryon asymmetry

    Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    Full text link
    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.Comment: 29 pages, 2 figures, discussion on IR safety expanded, appendix C added; version published in JCA

    Time-Sliced Perturbation Theory II: Baryon Acoustic Oscillations and Infrared Resummation

    Get PDF
    We use time-sliced perturbation theory (TSPT) to give an accurate description of the infrared non-linear effects affecting the baryonic acoustic oscillations (BAO) present in the distribution of matter at very large scales. In TSPT this can be done via a systematic resummation that has a simple diagrammatic representation and does not involve uncontrollable approximations. We discuss the power counting rules and derive explicit expressions for the resummed matter power spectrum up to next-to leading order and the bispectrum at the leading order. The two-point correlation function agrees well with N-body data at BAO scales. The systematic approach also allows to reliably assess the shift of the baryon acoustic peak due to non-linear effects.Comment: 38 pages + 24 pages of appendices and references, 8 figures; comparison with the Zel'dovich approximation added (Fig.8); version published in JCA

    Effective description of dark matter as a viscous fluid

    Full text link
    Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.Comment: 8 pages, 3 figures, talk by N. Tetradis at Quarks-2016, includes unpublished materia

    Electroweak lights from Dark Matter annihilations

    Full text link
    The energy spectra of Standard Model particles originated from Dark Matter annihilations can be significantly altered by the inclusion of electroweak gauge boson radiation from the final state. A situation where this effect is particularly important is when a Majorana Dark Matter particle annihilates into two light fermions. This process is in p-wave and hence suppressed by the small value of the relative velocity of the annihilating particles. The inclusion of electroweak radiation eludes this suppression and opens up a potentially sizeable s-wave contribution to the annihilation cross section. I will discuss the impact of this effect on the fluxes of stable particles resulting from the Dark Matter annihilations, which are relevant for Dark Matter indirect searches.Comment: 4 pages, 2 figures. Contribution to the conference proceedings of TAUP 2011, Munich - Germany (5-9 September 2011
    • …
    corecore