166 research outputs found
Adenovirus DNA in Guthrie cards from children who develop acute lymphoblastic leukaemia (ALL)
Aims: The aim of this thesis was to increase understanding of how molecular processes influence
the development and risk assessment of childhood leukemia. Studies I and II investigates whether a
specific virus infection in utero could be involved in a βfirst hitβ in leukemogenesis. Studies III and
IV examine whether alterations in protein expression from cell cycle regulating genes may predict
a relapse in children with myeloid malignancies undergoing hematopoietic stem cell
transplantation (HSCT).
Background: Genetic alterations, analyzed at time of diagnosis in children who develop leukemia,
have been traced back to neonatal dried blood spots (DBS). This suggests that the majority of
chromosome translocations occur in utero during fetal hematopoiesis, generating a βfirst hitβ. A
βsecond hitβ is then required to generate a leukemic clone. Today, experiments in vitro, animal
models, and clinical observations have revealed that several viruses are oncogenic and capable of
initiating a genetic alteration. Smith M postulated the theory that an in utero infection might be the
βfirst hitβ, causing genetic aberrations that could later lead to the development of the leukemic
clone, which is supported by the early age of onset and space-time clustering data, based on time,
place of birth, and diagnosis.
Leukemia develops as a result of hematopoietic or lymphoid tissue with uncontrolled cell division.
Normally cell division is controlled by the cell cycle, the network of which is complex with
numerous regulating proteins both up and down stream, but also containing several feedback
loops. The important regulators of this process are tumor suppressor genes, essential for normal
cell proliferation and differentiation as well as for controlling DNA integrity. Errors in these genes
or their protein expression affect the ability of the cell to check for DNA damage, thus tumors may
occur. Proteins from these genes could serve as prognostic markers and predict relapse.
Methods: In studies I and II we investigated neonatal DBS by PCR for the presence of adenovirus
DNA (243 samples) and the three newly discovered polyomaviruses (50 samples) from children
who later developed leukemia but also from controls (486 and 100 samples respectively). In
studies III and IV we explored the expression of one (p53) respectively four (p53, p21, p16 and
PTEN) cell cycle regulating proteins in bone marrow at diagnosis as well as pre and post HSCT in
myeloid malignancies in children. We retrospectively collected clinical data and bone marrow
samples from 33 children diagnosed with chronic myeloid malignancies (MDS, JMML and CML),
34 children diagnosed with AML as well as 55 controls. The samples were prepared by tissue
micro array (TMA) as well as immunohistochemistry and examined for protein expression in a
light microscope.
Results: In study I we detected adenovirus DNA in only two patients who later developed
leukemia, but in none of the controls. In study II all the samples were negative for KIPyV, WUPyV
and MCPyV DNA in both patients and controls. In study III we found an overexpression of p53
protein at diagnosis that significantly predicted relapse after HSCT in children with rare chronic
myeloid malignancies. In study IV a significantly higher p53 expression was found in the relapse
compared to the non-relapse group at six months post HSCT in children with AML, suggesting
that p53 may be used as prognostic markers for predicting a relapse. In addition, the calculated cut
off level for p53 at diagnosis (study III) and at six months (study IV) post HSCT was
approximately 20%, which indicates that a p53 expression over 20% may predict relapse in
children with myeloid malignancies.
Conclusion: Although we did not find an association between adenoviruses or the three newly
discovered polyomaviruses and the development of childhood leukemia, a virus could still be
involved in this process; the virus may have escaped detection, other new viruses could be
involved or a virus could precipitate the βsecond hitβ.
We suggest that evaluation of p53 protein expression may be used as a supplement to regular
prognostic markers both pre and post HSCT. To further evaluate this, a prospective multicenter
study has been started
Adenoviruses in Lymphocytes of the Human Gastro-Intestinal Tract
Objective: Persistent adenoviral shedding in stools is known to occur past convalescence following acute adenoviral infections. We wished to establish the frequency with which adenoviruses may colonize the gut in normal human subjects. Methods: The presence of adenoviral DNA in intestinal specimens obtained at surgery or autopsy was tested using a nested PCR method. The amplified adenoviral DNA sequences were compared to each other and to known adenoviral species. Lamina propria lymphocytes (LPLs) were isolated from the specimens and the adenoviral copy numbers in the CD4+ and CD8+ fractions were determined by quantitative PCR. Adenoviral gene expression was tested by amplification of adenoviral mRNA. Results: Intestinal tissue from 21 of 58 donors and LPLs from 21 of 24 donors were positive for the presence of adenoviral DNA. The majority of the sequences could be assigned to adenoviral species E, although species B and C sequences were also common. Multiple sequences were often present in the same sample. Forty-one non-identical sequences were identified from 39 different tissue donors. Quantitative PCR for adenoviral DNA in CD4+ and CD8+ fractions of LPLs showed adenoviral DNA to be present in both cell types and ranged from a few hundred to several million copies per million cells on average. Active adenoviral gene expression as evidenced by the presence of adenoviral messenger RNA in intestinal lymphocytes was demonstrated in 9 of the 11 donors tested
Molecular identification of adenoviruses associated with respiratory infection in Egypt from 2003 to 2010.
BACKGROUND: Human adenoviruses of species B, C, and E (HAdV-B, -C, -E) are frequent causative agents of acute respiratory infections worldwide. As part of a surveillance program aimed at identifying the etiology of influenza-like illness (ILI) in Egypt, we characterized 105 adenovirus isolates from clinical samples collected between 2003 and 2010. METHODS: Identification of the isolates as HAdV was accomplished by an immunofluorescence assay (IFA) and confirmed by a set of species and type specific polymerase chain reactions (PCR). RESULTS: Of the 105 isolates, 42% were identified as belonging to HAdV-B, 60% as HAdV-C, and 1% as HAdV-E. We identified a total of six co-infections by PCR, of which five were HAdV-B/HAdV-C co-infections, and one was a co-infection of two HAdV-C types: HAdV-5/HAdV-6. Molecular typing by PCR enabled the identification of eight genotypes of human adenoviruses; HAdV-3 (nβ=β22), HAdV-7 (nβ=β14), HAdV-11 (nβ=β8), HAdV-1 (nβ=β22), HAdV-2 (20), HAdV-5 (nβ=β15), HAdV-6 (nβ=β3) and HAdV-4 (nβ=β1). The most abundant species in the characterized collection of isolates was HAdV-C, which is concordant with existing data for worldwide epidemiology of HAdV respiratory infections. CONCLUSIONS: We identified three species, HAdV-B, -C and -E, among patients with ILI over the course of 7 years in Egypt, with at least eight diverse types circulating
A cost-utility analysis of cervical cancer vaccination in preadolescent Canadian females
<p>Abstract</p> <p>Background</p> <p>Despite the fact that approximately 70% of Canadian women undergo cervical cancer screening at least once every 3 years, approximately 1,300 women were diagnosed with cervical cancer and approximately 380 died from it in 2008. This study estimates the effectiveness and cost-effectiveness of vaccinating 12-year old Canadian females with an AS04-adjuvanted cervical cancer vaccine. The indirect effect of vaccination, via herd immunity, is also estimated.</p> <p>Methods</p> <p>A 12-health-state 1-year-cycle Markov model was developed to estimate lifetime HPV related events for a cohort of 12-year old females. Annual transition probabilities between health-states were derived from published literature and Canadian population statistics. The model was calibrated using Canadian cancer statistics. From a healthcare perspective, the cost-effectiveness of introducing a vaccine with efficacy against HPV-16/18 and evidence of cross-protection against other oncogenic HPV types was evaluated in a population undergoing current screening practices. The base-case analysis included 70% screening coverage, 75% vaccination coverage, 18,672-$31,687 per QALY-gained, the lower range representing inclusion of cross-protective efficacy and herd immunity. The cost per QALY-gained was most sensitive to duration of vaccine protection, discount rate, and the correlation between probability of screening and probability of vaccination.</p> <p>Conclusion</p> <p>In the context of current screening patterns, vaccination of 12-year old Canadian females with an ASO4-ajuvanted cervical cancer vaccine is estimated to significantly reduce cervical cancer and mortality, and is a cost-effective option. However, the economic attractiveness of vaccination is impacted by the vaccine's duration of protection and the discount rate used in the analysis.</p
Evaluating human papillomavirus vaccination programs in Canada: should provincial healthcare pay for voluntary adult vaccination?
Abstract Background Recently, provincial health programs in Canada and elsewhere have begun rolling out vaccination against human papillomavirus for girls aged 9β13. While vaccination is voluntary, the cost of vaccination is waived, to encourage parents to have their daughters vaccinated. Adult women who are eligible for the vaccine may still receive it, but at a cost of approximately CAN$400. Given the high efficacy and immunogenicity of the vaccine, the possibility of eradicating targeted types of the virus may be feasible, assuming the vaccination programs are undertaken strategically. Methods We develop a mathematical model to describe the epidemiology of vaccination against human papillomavirus, accounting for a widespread childhood vaccination program that may be supplemented by voluntary adult vaccination. A stability analysis is performed to determine the stability of the disease-free equilibrium. The critical vaccine efficacy and immunogenicity thresholds are derived, and the minimum level of adult vaccination required for eradication of targeted types is determined. Results We demonstrate that eradication of targeted types is indeed feasible, although the burden of coverage for a childhood-only vaccination program may be high. However, if a small, but non-negligible, proportion of eligible adults can be vaccinated, then the possibility of eradication of targeted types becomes much more favourable. We provide a threshold for eradication in general communities and illustrate the results with numerical simulations. We also investigate the effects of suboptimal efficacy and immunogenicity and show that there is a critical efficacy below which eradication of targeted types is not possible. If eradication is possible, then there is a critical immunogenicity such that even 100% childhood vaccination will not eradicate the targeted types of the virus and must be supplemented with voluntary adult vaccination. However, the level of adult vaccination coverage required is modest and may be achieved simply by removing the cost burden to vaccination. Conclusion We recommend that provincial healthcare programs should pay for voluntary adult vaccination for women aged 14β26. However, it should be noted that our model results are preliminary, in that we have made a number of simplifying assumptions, including a lack of age-dependency in sexual partner rates, a lack of sexual activity outside of the vaccine age-range among females and a uniform age of sexual debut; thus, further work is desired to enhance the external generalisability of our results.</p
Treating cofactors can reverse the expansion of a primary disease epidemic
<p>Abstract</p> <p>Background</p> <p>Cofactors, "nuisance" conditions or pathogens that affect the spread of a primary disease, are likely to be the norm rather than the exception in disease dynamics. Here we present a "simplest possible" demographic model that incorporates two distinct effects of cofactors: that on the transmission of the primary disease from an infected host bearing the cofactor, and that on the acquisition of the primary disease by an individual that is not infected with the primary disease but carries the cofactor.</p> <p>Methods</p> <p>We constructed and analyzed a four-patch compartment model that accommodates a cofactor. We applied the model to HIV spread in the presence of the causal agent of genital schistosomiasis, <it>Schistosoma hematobium</it>, a pathogen commonly co-occurring with HIV in sub-Saharan Africa.</p> <p>Results</p> <p>We found that cofactors can have a range of effects on primary disease dynamics, including shifting the primary disease from non-endemic to endemic, increasing the prevalence of the primary disease, and reversing demographic growth when the host population bears only the primary disease to demographic decline. We show that under parameter values based on the biology of the HIV/<it>S. haematobium </it>system, reduction of the schistosome-bearing subpopulations (e.g. through periodic use of antihelminths) can slow and even reverse the spread of HIV through the host population.</p> <p>Conclusions</p> <p>Typical single-disease models provide estimates of future conditions and guidance for direct intervention efforts relating only to the modeled primary disease. Our results suggest that, in circumstances under which a cofactor affects the disease dynamics, the most effective intervention effort might not be one focused on direct treatment of the primary disease alone. The cofactor model presented here can be used to estimate the impact of the cofactor in a particular disease/cofactor system without requiring the development of a more complicated model which incorporates many other specific aspects of the chosen disease/cofactor pair. Simulation results for the HIV/<it>S. haematobium </it>system have profound implications for disease management in developing areas, in that they provide evidence that in some cases treating cofactors may be the most successful and cost-effective way to slow the spread of primary diseases.</p
Adenovirus DNA is detected at increased frequency in Guthrie cards from children who develop acute lymphoblastic leukaemia
Epidemiological evidence suggests that childhood acute lymphoblastic leukaemia (ALL) may be initiated by an in infection in utero. Adenovirus DNA was detected in 13 of 49 neonatal blood spots from ALL patients but only in 3 of 47 controls (P=0.012) suggesting a correlation between prenatal adenovirus infection and the development of AL
Sub-Lethal Irradiation of Human Colorectal Tumor Cells Imparts Enhanced and Sustained Susceptibility to Multiple Death Receptor Signaling Pathways
Background: Death receptors (DR) of the TNF family function as anti-tumor immune effector molecules. Tumor cells, however, often exhibit DR-signaling resistance. Previous studies indicate that radiation can modify gene expression within tumor cells and increase tumor cell sensitivity to immune attack. The aim of this study is to investigate the synergistic effect of sub-lethal doses of ionizing radiation in sensitizing colorectal carcinoma cells to death receptor-mediated apoptosis. Methodology/Principal Findings: The ability of radiation to modulate the expression of multiple death receptors (Fas/ CD95, TRAILR1/DR4, TRAILR2/DR5, TNF-R1 and LTbR) was examined in colorectal tumor cells. The functional significance of sub-lethal doses of radiation in enhancing tumor cell susceptibility to DR-induced apoptosis was determined by in vitro functional sensitivity assays. The longevity of these changes and the underlying molecular mechanism of irradiation in sensitizing diverse colorectal carcinoma cells to death receptor-mediated apoptosis were also examined. We found that radiation increased surface expression of Fas, DR4 and DR5 but not LTbR or TNF-R1 in these cells. Increased expression of DRs was observed 2 days post-irradiation and remained elevated 7-days post irradiation. Sub-lethal tumor cell irradiation alone exhibited minimal cell death, but effectively sensitized three of three colorectal carcinoma cells to both TRAIL and Fasinduced apoptosis, but not LTbR-induced death. Furthermore, radiation-enhanced Fas and TRAIL-induced cell death lasted as long as 5-days post-irradiation. Specific analysis of intracellular sensitizers to apoptosis indicated that while radiation di
Matrix Metalloproteinase-8 Mediates the Unfavorable Systemic Impact of Local Irradiation on Pharmacokinetics of Anti-Cancer Drug 5-Fluorouracil
Concurrent chemoradiation with 5-fluorouracil (5-FU) is widely accepted for cancer treatment. However, the interactions between radiation and 5-FU remain unclear. Here, we evaluated the influence of local irradiation on the pharmacokinetics of 5-FU in rats. The single-fraction radiation was delivered to the whole pelvic fields of Sprague-Dawley rats after computerized tomography-based planning. 5-FU at 100 mg/kg was prescribed 24 hours after radiation. A high-performance liquid chromatography system was used to measure 5-FU in the blood. Matrix metalloproteinase-8 (MMP-8) inhibitor I was administered to examine whether or not RT modulation of 5-FU pharmacokinetic parameters could be blocked. Compared with sham-irradiated controls, whole pelvic irradiation reduced the area under the concentration versus time curve (AUC) of 5-FU in plasma and, in contrast, increased in bile with a radiation dose-dependent manner. Based on protein array analysis, the amount of plasma MMP-8 was increased by whole pelvic irradiation (2.8-fold by 0.5 Gy and 5.3-fold by 2 Gy) in comparison with controls. Pretreatment with MMP-8 inhibitor reversed the effect of irradiation on AUC of 5-FU in plasma. Our findings first indicate that local irradiation modulate the systemic pharmacokinetics of 5-FU through stimulating the release of MMP-8. The pharmacokinetics of 5-FU during concurrent chemoradiaiton therapy should be rechecked and the optimal 5-FU dose should be reevaluated, and adjusted if necessary, during CCRT
Enhanced Transduction and Replication of RGD-Fiber Modified Adenovirus in Primary T Cells
Background: Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR). T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD). Methodology/Principal Finding: A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replicationcompetent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35β45 % of splenic T cells were transduced by Ad-RGD. Conclusions: Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary
- β¦