2 research outputs found

    Seminal fluid protein divergence among populations exhibiting postmating prezygotic reproductive isolation

    Get PDF
    Despite holding a central role in fertilization, reproductive traits often show elevated rates of evolution and diversification. The rapid evolution of seminal fluid proteins (Sfps) within populations is predicted to cause mis‐signalling between the male ejaculate and the female during and after mating resulting in postmating prezygotic (PMPZ) isolation between populations. Crosses between Drosophila montana populations show PMPZ isolation in the form of reduced fertilization success in both noncompetitive and competitive contexts. Here we test whether male ejaculate proteins produced in the accessory glands or ejaculatory bulb differ between populations using liquid chromatography tandem mass spectrometry. We find more than 150 differentially abundant proteins between populations that may contribute to PMPZ isolation, including a number of proteases, peptidases and several orthologues of Drosophila melanogaster Sfps known to mediate fertilization success. Males from the population that elicit the stronger PMPZ isolation after mating with foreign females typically produced greater quantities of Sfps. The accessory glands and ejaculatory bulb show enrichment for different gene ontology (GO) terms and the ejaculatory bulb contributes more differentially abundant proteins. Proteins with a predicted secretory signal evolve faster than nonsecretory proteins. Finally, we take advantage of quantitative proteomics data for three Drosophila species to determine shared and unique GO enrichments of Sfps between taxa and which potentially mediate PMPZ isolation. Our study provides the first high‐throughput quantitative proteomic evidence showing divergence of reproductive proteins between populations that exhibit PMPZ isolation

    Toward the integration of speciation research

    No full text
    Speciation research—the scientific field focused on understanding the origin and diversity of species—has a long and complex history. While relevant to one another, the specific goals and activities of speciation researchers are highly diverse, and scattered across a collection of different perspectives. Thus, our understanding of speciation will benefit from efforts to bridge scientific findings and the diverse people who do the work. In this paper, we outline two ways of integrating speciation research: (i) scientific integration, through the bringing together of ideas, data, and approaches; and (ii) social integration, by creating ways for a diversity of researchers to participate in the scientific process. We then discuss five challenges to integration: (i) the multidisciplinary nature of speciation research, (ii) the complex language of speciation; (iii) a bias toward certain study systems; (iv) the challenges of working across scales; and (v) inconsistent measures and reporting standards. We provide practical steps that individuals and groups can take to help overcome these challenges, and argue that integration is a team effort in which we all have a role to play
    corecore