6 research outputs found

    Viscosity in spherically symmetric accretion

    Full text link
    The influence of viscosity on the flow behaviour in spherically symmetric accretion, has been studied here. The governing equation chosen has been the Navier-Stokes equation. It has been found that at least for the transonic solution, viscosity acts as a mechanism that detracts from the effectiveness of gravity. This has been conjectured to set up a limiting scale of length for gravity to bring about accretion, and the physical interpretation of such a length-scale has been compared with the conventional understanding of the so-called "accretion radius" for spherically symmetric accretion. For a perturbative presence of viscosity, it has also been pointed out that the critical points for inflows and outflows are not identical, which is a consequence of the fact that under the Navier-Stokes prescription, there is a breakdown of the invariance of the stationary inflow and outflow solutions -- an invariance that holds good under inviscid conditions. For inflows, the critical point gets shifted deeper within the gravitational potential well. Finally, a linear stability analysis of the stationary inflow solutions, under the influence of a perturbation that is in the nature of a standing wave, has indicated that the presence of viscosity induces greater stability in the system, than has been seen for the case of inviscid spherically symmetric inflows.Comment: 7 pages. Minor changes made in the version published in MNRA

    Realizability of stationary spherically symmetric transonic accretion

    Get PDF
    The spherically symmetric stationary transonic (Bondi) flow is considered a classic example of an accretion flow. This flow, however, is along a separatrix, which is usually not physically realizable. We demonstrate, using a pedagogical example, that it is the dynamics which selects the transonic flow.Comment: 4 pages in REVTeX with 2 figures. Typos have been corrected and some alterations have been made in the version published in Physical Review

    Likelihood as a measure of uncertainty in system reliability and probabilistic safety assessment

    No full text
    4.00Available from British Library Document Supply Centre- DSC:9091.9F(SRD-R--443) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Oral Manifestations of Viral Diseases

    No full text
    corecore