965 research outputs found

    Alloy composition effects on oxidation products of VIA, B-1900, 713C, and 738X: A high temperature diffractometer study

    Get PDF
    High temperature X-ray diffraction studies were performed to investigate isothermal and cyclic oxidation at 1000 and 1100 C of the nickel-base superalloys VIA, B-1900, 713C, and 738X. Oxidation was complex. The major oxides, Al2O3, Cr2O3, and the spinels, formed in amounts consistent with alloy chemistry. The alloys VIA and B-1900 (high Al, low Cr alloys) tended to form Al2O3 and NiAl2O4; 738X (high Cr, low Al) formed Cr2O3 and NiCr2O4. A NiTa2O6 type of oxide formed in amounts approximately proportional to the refractory metal content of the alloy. One of the effects of cycling was to increase the amount of spinels formed

    A stereographic representation of Knoop hardness anisotropy

    Get PDF
    Indentation direction parameter for hardness anisotropy representation of single crystal on stereographic triangl

    Design study of large area 8 cm x 8 cm wrapthrough cells for space station

    Get PDF
    The design of large area silicon solar cells for the projected NASA space station is discussed. It is based on the NASA specification for the cells which calls for an 8 cm by 8 cm cell of wrapthrough type with gridded back contacts. The beginning of life (BOL) power must be 1.039 watts per cell or larger and maximum end of life (EOL) after 10 years in the prescribed orbit under an equivalent 1MeV electron radiation damage fluence of 5 times 10 to the 13th power e/square cm. On orbit efficiency is to be optimized by a low thermal absorptance goal (thermal alpha) of .63

    Thermal expansion in the nickel-chromium-aluminum and cobalt-chromium-aluminum systems to 1200 degrees C

    Get PDF
    Thermal expansion data were obtained on 12 Ni-Cr-Al and 9 Co-Cr-Al alloys by high temperature X-ray diffraction. The data were computer fit to an empirical thermal expansion equation developed in the study. It is shown that the fit is excellent to good, and that the expansion constants depend on phase but not on composition. Phases for the Ni-Cr-Al system and Co-Cr-Al system are given. Results indicate that only alpha Cr has an expansion constant low enough to minimize oxide spalling or coating cracking induced by thermal expansion mismatch

    High-Temperature Cyclic Oxidation Data, Volume 1

    Get PDF
    This first in a series of cyclic oxidation handbooks contains specific-weight-change-versus-time data and X-ray diffraction results derived from high-temperature cyclic tests on high-temperature, high-strength nickel-base gamma/gamma' and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample

    Region of the anomalous compression under Bondi-Hoyle accretion

    Full text link
    We investigate the properties of an axisymmetric non-magnetized gas flow without angular momentum on a small compact object, in particular, on a Schwarzschild black hole in the supersonic region near the object; the velocity of the object itself is assumed to be low compared to the speed of sound at infinity. First of all, we see that the streamlines intersect (i.e., a caustic forms) on the symmetry axis at a certain distance rxr_x from the center on the front side if the pressure gradient is neglected. The characteristic radial size of the region, in which the streamlines emerging from the sonic surface at an angle no larger than θ0\theta_0 to the axis intersect, is Δr=rxθ02/3.\Delta r= r_x\theta^2_0/3. To refine the flow structure in this region, we numerically compute the system in the adiabatic approximation without ignoring the pressure. We estimate the parameters of the inferred region with anomalously high matter temperature and density accompanied by anomalously high energy release.Comment: 10 pages, 2 figure

    Growth of Perturbation in Gravitational Collapse and Accretion

    Get PDF
    When a self-gravitating spherical gas cloud collapses or accretes onto a central mass, the inner region of the cloud develops a density profile ρr3/2\rho\propto r^{-3/2} and the velocity approaches free-fall. We show that in this region, nonspherical perturbations grow with decreasing radius. In the linear regime, the tangential velocity perturbation increases as r1r^{-1}, while the Lagrangian density perturbation, Δρ/ρ\Delta\rho/\rho, grows as r1/2r^{-1/2}. Faster growth occurs if the central collapsed object maintains a finite multiple moment, in which case Δρ/ρ\Delta\rho/\rho increases as rlr^{-l}, where ll specifies the angular degree of the perturbation. These scaling relations are different from those obtained for the collapse of a homogeneous cloud. Our numerical calculations indicate that nonspherical perturbations are damped in the subsonic region, and that they grow and approach the asymptotic scalings in the supersonic region. The implications of our results to asymmetric supernova collapse and to black hole accretion are briefly discussed.Comment: 23 pages including 6 ps figures; Minor changes and update; To appear in ApJ, 200

    Perturbations on steady spherical accretion in Schwarzschild geometry

    Full text link
    The stationary background flow in the spherically symmetric infall of a compressible fluid, coupled to the space-time defined by the static Schwarzschild metric, has been subjected to linearized perturbations. The perturbative procedure is based on the continuity condition and it shows that the coupling of the flow with the geometry of space-time brings about greater stability for the flow, to the extent that the amplitude of the perturbation, treated as a standing wave, decays in time, as opposed to the amplitude remaining constant in the Newtonian limit. In qualitative terms this situation simulates the effect of a dissipative mechanism in the classical Bondi accretion flow, defined in the Newtonian construct of space and time. As a result of this approach it becomes impossible to define an acoustic metric for a conserved spherically symmetric flow, described within the framework of Schwarzschild geometry. In keeping with this view, the perturbation, considered separately as a high-frequency travelling wave, also has its amplitude reduced.Comment: 8 pages, no figur

    Increased collagen synthesis rate during wound healing in muscle

    Get PDF
    Wound healing in muscle involves the deposition of collagen, but it is not known whether this is achieved by changes in the synthesis or the degradation of collagen. We have used a reliable flooding dose method to measure collagen synthesis rate in vivo in rat abdominal muscle following a surgical incision. Collagen synthesis rate was increased by 480% and 860% on days 2 and 7 respectively after surgery in the wounded muscle compared with an undamaged area of the same muscle. Collagen content was increased by approximately 100% at both day 2 and day 7. These results demonstrate that collagen deposition during wound healing in muscle is achieved entirely by an increase in the rate of collagen synthesis
    corecore