39 research outputs found

    Synthesis, Structure and Properties of Tetragonal Sr2M3As2O2 (M3 = Mn3, Mn2Cu and MnZn2) Compounds Containing Alternating CuO2-Type and FeAs-Type Layers

    Full text link
    Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were synthesized. Their temperature- and applied magnetic field-dependent structural, transport, thermal, and magnetic properties were characterized by means of x-ray and neutron diffraction, electrical resistivity rho, heat capacity, magnetization and magnetic susceptibility measurements. These compounds have a body-centered-tetragonal crystal structure (space group I4/mmm) that consists of MO2 (M = Zn and/or Mn) oxide layers similar to the CuO2 layers in high superconducting transition temperature Tc cuprate superconductors, and intermetallic MAs (M = Cu and/or Mn) layers similar to the FeAs layers in high-Tc pnictides. These two types of layers alternate along the crystallographic c-axis and are separated by Sr atoms. The site occupancies of Mn, Cu and Zn were studied using Rietveld refinements of x-ray and neutron powder diffraction data. The temperature dependences of rho suggest metallic character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie temperature TC = 95(1) K. Remarkably, we find that the magnetic ground state structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each layer are ferromagnetically aligned, but are antiferromagnetically aligned between layers.Comment: 18 pages, 16 figures, 6 tables; submitted to Phys. Rev.

    Magnetic Frustration Driven by Itinerancy in Spinel CoV2O4

    Get PDF
    Localized spins and itinerant electrons rarely coexist in geometrically-frustrated spinel lattices. They exhibit a complex interplay between localized spins and itinerant electrons. In this paper, we study the origin of the unusual spin structure of the spinel CoV2O4, which stands at the crossover from insulating to itinerant behavior using the first principle calculation and neutron diffraction measurement. In contrast to the expected paramagnetism, localized spins supported by enhanced exchange couplings are frustrated by the effects of delocalized electrons. This frustration produces a non-collinear spin state even without orbital orderings and may be responsible for macroscopic spin-glass behavior. Competing phases can be uncovered by external perturbations such as pressure or magnetic field, which enhances the frustration

    Bose-Einstein Condensation in Magnetic Insulators

    Full text link
    The elementary excitations in antiferromagnets are magnons, quasiparticles with integer spin and Bose statistics. In an experiment their density is controlled efficiently by an applied magnetic field and can be made finite to cause the formation of a Bose-Einstein condensate (BEC). Studies of magnon condensation in a growing number of magnetic materials provide a unique window into an exciting world of quantum phase transitions (QPT) and exotic quantum states.Comment: 17 pages, 3 figure
    corecore