77 research outputs found

    Magnetic Phase Transitions in NdCoAsO

    Get PDF
    Magnetization measurements reveal that NdCoAsO undergoes three magnetic phase transitions below room temperature. The crystal and magnetic structures of NdCoAsO have been determined by powder neutron diffraction, and the effects of the phase transitions on physical properties are reported. Near 69 K a ferromagnetic state emerges with a small saturation moment of about 0.2 Bohr magnetons, likely on Co atoms. At 14 K the material enters an antiferromagnetic state with propagation vector (0 0 1/2) and small ordered moments (~0.4 Bohr magnetons) on Co and Nd. Near 3.5 K a third transition is observed, and corresponds to the antiferromagnetic ordering, with the same propagation vector, of larger moments on Nd reaching 1.30(2) Bohr magnetons at 1.4 K. In addition, transport properties and heat capacity results are presented, and show anomalies at all three phase transitions.Comment: Some minor changes made, and lower temperature neutron diffraction results are included. Accepted for publication in Physical Review

    Synthesis, Structure and Properties of Tetragonal Sr2M3As2O2 (M3 = Mn3, Mn2Cu and MnZn2) Compounds Containing Alternating CuO2-Type and FeAs-Type Layers

    Full text link
    Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were synthesized. Their temperature- and applied magnetic field-dependent structural, transport, thermal, and magnetic properties were characterized by means of x-ray and neutron diffraction, electrical resistivity rho, heat capacity, magnetization and magnetic susceptibility measurements. These compounds have a body-centered-tetragonal crystal structure (space group I4/mmm) that consists of MO2 (M = Zn and/or Mn) oxide layers similar to the CuO2 layers in high superconducting transition temperature Tc cuprate superconductors, and intermetallic MAs (M = Cu and/or Mn) layers similar to the FeAs layers in high-Tc pnictides. These two types of layers alternate along the crystallographic c-axis and are separated by Sr atoms. The site occupancies of Mn, Cu and Zn were studied using Rietveld refinements of x-ray and neutron powder diffraction data. The temperature dependences of rho suggest metallic character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie temperature TC = 95(1) K. Remarkably, we find that the magnetic ground state structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each layer are ferromagnetically aligned, but are antiferromagnetically aligned between layers.Comment: 18 pages, 16 figures, 6 tables; submitted to Phys. Rev.

    Inhomogeneous magnetism in the doped kagome lattice of LaCuO2.66

    Full text link
    The hole-doped kagome lattice of Cu2+ ions in LaCuO2.66 was investigated by nuclear quadrupole resonance (NQR), electron spin resonance (ESR), electrical resistivity, bulk magnetization and specific heat measurements. For temperatures above ~180 K, the spin and charge properties show an activated behavior suggestive of a narrow-gap semiconductor. At lower temperatures, the results indicate an insulating ground state which may or may not be charge ordered. While the frustrated spins in remaining patches of the original kagome lattice might not be directly detected here, the observation of coexisting non-magnetic sites, free spins and frozen moments reveals an intrinsically inhomogeneous magnetism. Numerical simulations of a 1/3-diluted kagome lattice rationalize this magnetic state in terms of a heterogeneous distribution of cluster sizes and morphologies near the site-percolation threshold

    Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2_2O4_4

    Full text link
    We describe why Ising spin chains with competing interactions in SrHo2O4\rm SrHo_2O_4 segregate into ordered and disordered ensembles at low temperatures (TT). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have N\'eel (↑↓↑↓\uparrow\downarrow\uparrow\downarrow) and double-N\'eel (↑↑↓↓\uparrow\uparrow\downarrow\downarrow) ground states respectively. Below TN=0.68(2)T_\mathrm{N}=0.68(2)~K, the N\'eel chains develop three dimensional (3D) long range order (LRO), which arrests further thermal equilibration of the double-N\'eel chains so they remain in a disordered incommensurate state for TT below TS=0.52(2)T_\mathrm{S}= 0.52(2)~K. SrHo2O4\rm SrHo_2O_4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defects in a quasi−d−-d-dimensional spin system can preclude order in d+1d+1 dimensions.Comment: 10 pages, 10 figure

    Neutron scattering study of TbPtIn intermetallic compound

    Get PDF
    Neutron diffraction techniques have been used to study the magnetic properties of a TbPtIn single-crystal as a function of temperature and magnetic field. In the absence of an externally applied magnetic field, the compound orders, below approximately 47 K, in an antiferromagnetic structure with propagation vector k=(12,0,12); the magnetic moments were found to be parallel to the [12Ì„0] direction. Measurements at 4.2 K, with a magnetic field applied along the [12Ì„0] direction, revealed metamagnetic transitions at approximately 20 kG and 40 kG

    Neutron diffraction studies of the magnetoelastic compounds Tb5SixGe4−x (x=2.2 and 2.5)

    Get PDF
    We report the results of a neutron diffraction study, carried out on both single crystalline and polycrystalline samples of Tb5Si2.2Ge1.8 and polycrystalline Tb5Si2.5Ge1.5. On cooling, at approximately 120 K, the Tb5Si2.2Ge1.8 system undergoes a magnetoelastic transition from a high-temperature monoclinic-paramagnetic to a low-temperature orthorhombic-ferromagnetic structure. Between 120 K and 75 K, the magnetic structure has a net ferromagnetic component along the a axis direction. The moments are slightly canted with respect to the a axis, while the components along the b and c axes are ordered antiferromagnetically. A second magnetic transition occurs at approximately 75 K. Below this temperature, the magnetic structure consists of ferromagnetically aligned μx and μz projections of the magnetic moments and an antiferromagnetic arrangement of theμy moment components. Magnetic structures of Tb5Si2.5Ge1.5 are nearly identical to those of Tb5Si2.2Ge1.8
    • …
    corecore