27 research outputs found

    FIRST RESULTS OF AN EXPERIMENT ON ADVANCED COLLIMATOR MATERIALS AT CERN HIRADMAT FACILITY

    Get PDF
    A comprehensive, first-of-its-kind experiment (HRMT-14) has been recently carried out at CERN HiRadMat facility on six different materials of interest for Beam Intercepting Devices (collimators, targets, dumps). Both traditional materials (Mo, W and Cu alloys) as well as advanced metal/diamond and metal/graphite composites were tested under extreme conditions as to pressure, density and temperature, leading to the development of highly dynamic phenomena as shock-waves, spallation, explosions. Experimental data were acquired, mostly in real time, relying on extensive integrated instrumentation (strain gauges, temperature and vacuum sensors) and on remote acquisition devices (laser Doppler vibrometer and high-speed camera). The experiment was a success under all points of view in spite of the technological challenges and harsh environment. First measurements are in good agreement with results of complex simulations, confirming the effectiveness of the acquisition system and the reliability of advanced numerical methods when material constitutive models are completely available. Valuable information has been collected as to thermalshock robustness of tested materials

    Update on Beam Induced RF Heating in the LHC

    Get PDF
    Since June 2011 the rapid increase of the luminosity performance of the LHC has come at the expense of both increased temperature and pressure of specific, near-beam, LHC equipment. In some cases, this beam induced heating has caused delays while equipment cool-down, beam dumps and even degradation of some devices. This contribution gathers the observations of beam induced heating, attributed to longitudinal beam coupling impedance, their current level of understanding and possible actions planned to be implemented during the 1st LHC Long Shutdown (LS1) in 2013-2014

    Design Guidelines for Ferrite Absorbers Submitted to RF-induced Heating

    No full text
    The use of ferrite absorbers is one of the most effective means of damping potentially harmful high order RF modes, which may lead to beam instabilities and excessive power losses in accelerator devices. However, the power deposited on ferrite absorbers themselves maylead to ferrite exceeding its Curie temperature, losing its damping properties. An evaluation of the ferrite capability to dissipate deposited heat is hence of paramount importance for the safe design of particle accelerator devices. In this paper, figures of merit are proposed to assess the maximum specific power allowed on a generic ferrite tile, before it reaches its Curie temperature. Due to its inherent brittleness, sufficient contact pressure between ferrite and its housing, allowing heat transmission by conduction, can hardly be applied. A semi-analytical study is thus performed, assuming that ferrite is evacuating heat solely through radiation. The described method is then exemplified in the case of the BPM-embedded tertiary collimator (TCTP) designed in the framework of the LHC collimation upgrade

    Simulation of the cabling process for Rutherford cables: An advanced finite element model

    No full text
    In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb 3 Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb 3 Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN

    Formability and Surface Quality of Non-Conventional Material Sheets for the Manufacture of Highly Customized Components

    No full text
    In this work, incremental forming of pure niobium planar isotropic sheets was studied; in particular, two different types of test were conducted by varying the tool/sheet contact conditions, in order to understand the complex phenomena interesting this hard-to-form non-conventional material and to focus the attention on its formability and the finishing of the worked surfaces. From the tests, the formability limits were determined, the forming forces were acquired and analysed, the quality of the worked surfaces was evaluated with measures of roughness and high-magnification visual inspection, as well as the failures of the sheets were observed and interpreted. The results highlight that a proper choice of the contact conditions can avoid the occurrence of galling while preserving an optimal carrying out of the process. In any case, very good surface finishing and workability of niobium sheets, despite their brittle nature, is found when incrementally formed. As a consequence, incremental sheet forming of this non-conventional material can be considered a faisible way of manufacturing highly customized components

    Considerations on the influence of the tool/sheet contact conditions for incremental forming of niobium sheets

    No full text
    Niobium is a ductile transition metal of growing interest for several technological applications, thanks to its intriguing characteristics, among them high melting point, moderate density, good ductility, high corrosion resistance and superconductivity. By contrast, its use is limited by some weaknesses lied to the mechanical properties, which can undermine the quality of the surfaces worked by metal forming processes. Sheets of pure Niobium can be used for the manufacture of extremely customized components and a flexible process like the incremental sheet forming fits well with this manufacturing philosophy; in fact, this technique does not require complicated tools and/or dedicated equipment and is capable to respond quickly to the market demands. The scope of this paper is to investigate the influence of the tool/sheet contact conditions on different features like the forming loads, the surface quality and the occurrence of failures, when pure Niobium rolled sheets are formed incrementally. To this aim, the simplest variant of incremental sheet forming, namely single point incremental forming, was considered by using a common fixed end forming tool with hemispherical head. The process was carried out under dry and lubricated tool/sheet contact conditions, following the indications from a preliminary campaign of wear tests conducted by a pin-on-disk apparatus. The experimental campaign highlights the strong influence of the tool/sheet contact conditions and the importance of a correct choice of them on the features investigated, in order to limit the forming forces and the risk of failure, as well as to preserve the surface quality of the components made by incremental sheet forming of Niobium

    Understanding the Friction Behavior of Niobium Sheets during Forming Processes

    No full text
    Niobium is a material widely used for particle accelerating facilities, such as cavities. These components are usually obtained through forming processes, and then to understand the friction behavior of niobium sheets during the forming process can be very useful. Therefore, in this work the friction behavior of niobium sheets under conditions similar to the ones faced in forming processes has been studied. Pin-on-disk tests have been carried out in both dry and lubricated conditions, and different values of contact force in the range of 2.5 and 20 N have been adopted to observe and understand the tribological behavior of niobium. The worn surfaces have been observed through a scanning electron microscope and EDX analyses to reveal the wear mechanisms. The experimental outcomes proved that niobium exhibits very high friction coefficient with a severe adhesive wear under dry condition, while a lower friction coefficient with a less severe wear mechanism has been observed when lubricant is adopted

    Cyclinac medical accelerators using pulsed C6+/H2+ ion sources

    Get PDF
    20 páginas, 9 figuras, 2 tablas.-- Trabajo presentado al International Symposium on Electron Beam Ion Sources and Traps (EBIST2010), celebrado en Estocolmo (Suecia/ Abril 2010).-- This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.-- El PDF es la versión pre-print.-- et al.Charged particle therapy, or so-called hadrontherapy, is developing very rapidly. There is large pressure on the scientific community to deliver dedicated accelerators, providing the best possible treatment modalities at the lowest cost. In this context, the Italian research Foundation TERA is developing fast-cycling accelerators, dubbed `cyclinacs'. These are a combination of a cyclotron (accelerating ions to a fixed initial energy) followed by a high gradient linac boosting the ions energy up to the maximum needed for medical therapy. The linac is powered by many independently controlled klystrons to vary the beam energy from one pulse to the next. This accelerator is best suited to treat moving organs with a 4D multipainting spot scanning technique. A dual proton/carbon ion cyclinac is here presented. It consists of an Electron Beam Ion Source, a superconducting isochronous cyclotron and a high-gradient linac. All these machines are pulsed at high repetition rate (100–400 Hz). The source should deliver both C6+ and H2+ ions in short pulses (1.5 μs flat-top) and with sufficient intensity (at least 108 fully stripped carbon ions per pulse at 300 Hz). The cyclotron accelerates the ions to 120 MeV/u. It features a compact design (with superconducting coils) and a low power consumption. The linac has a novel C-band high-gradient structure and accelerates the ions to variable energies up to 400 MeV/u. High RF frequencies lead to power consumptions which are much lower than the ones of synchrotrons for the same ion extraction energy. This work is part of a collaboration with the CLIC group, which is working at CERN on high-gradient electron-positron colliders.The authors warmly thank A.D.A.M. S.A. and the Vodafone Foundation for their generous financial support of TERA research activities.Peer reviewe
    corecore