23 research outputs found

    Mechanical properties of natural-fibre-mat-reinforced thermoplastics based on flax fibres and polypropylene.

    No full text
    Thermoplastic composites based on flax fibres and a polypropylene (PP) matrix were manufactured using (i) a film-stacking method based on random fibre mats and (ii) a paper making process based on chopped fibres. The influence of fibre length and fibre content on stiffness, strength and impact strength of these so-called natural-fibre-mat-reinforced thermoplastics (NMTs) is reported and compared with data for glass-mat-reinforced thermoplastics (GMTs), including the influence of the use of maleic-anhydride grafted PP for improved interfacial adhesion. In addition some preliminary data on the influence of fibre diameter on composite stiffness and strength is reported. The data is compared with the existing micro-mechanical models for strength and stiffness. A good agreement was found between theory and experiment in case of stiffness whereas in the case of strength the experimental values fall well below the theoretical predictions. Results indicated that NMTs are of interest for low-cost engineering applications and can compete with commercial GMTs when a high stiffness per unit weight is desirable. Results also indicated that future research towards significant improvements in tensile and impact strength of these types of composites should focus on the optimisation of fibre strength rather than interfacial bond strength

    Environmental durability of flax fibres and their composites based on polypropylene matrix

    Get PDF
    The environmental degradation behaviour of flax fibres and their polymer composites are explored. New upgraded Duralin flax fibres, which have been treated by a novel treatment process for improved moisture and rot sensitivity were studied. Environmental studies showed that these upgraded Duralin flax fibres absorb less moisture than untreated Green flax fibres, whereas the mechanical properties of the treated fibres were retained, if not improved. The effect of this novel flax fibre treatment on the environmental behaviour of natural-fibre-mat-reinforced thermoplastics (NMTs) is investigated by monitoring the moisture absorption and swelling, and measuring the residual mechanical properties of the flax/polypropylene composites at different moisture levels. The moisture absorption and swelling of the upgraded flax fibre composites is approximately 30% lower than that of composites based on Green flax fibres
    corecore