23 research outputs found

    Energy Systematics of Low-lying Collective States within the Framework of the Interacting Vector Boson Model

    Full text link
    In a new application of the algebraic Interacting Vector Boson Model (IVBM), we exploit the reduction of its Sp(12,R) dynamical symmetry group to Sp(4,R) x SO(3), which defines basis states with fixed values of the angular momentum L. The relationship of the latter to $U(6) \subset U(3)x U(2), which is the rotational limit of the model, means the energy distribution of collective states with fixed angular momentum can be studied. Results for low-lying spectra of rare-earth nuclei show that the energies of collective positive parity states with L=0,2,4,6... lie on second order curves with respect to the number of collective phonons n or vector bosons N=4n out of which the states are built. The analysis of this behavior leads to insight regarding the common nature of collective states, tracking vibrational as well as rotational features.Comment: 8 pages, 5 figures, 4 table

    Analytic Formulae for the Matrix Elements of the Transition Operators in the Symplectic Extension of the Interacting Vector Boson Model

    Full text link
    The tensor properties of all the generators of Sp(12,R) - the group of dynamical symmetry of the Interacting Vector Boson Model (IVBM), are given with respect to the reduction chain Sp(12,R) ⊃\supset U(6) ⊃\supset U(3) x U(2) ⊃\supset O(3) x U(1). Matrix elements of the basic building blocks of the model are evaluated in symmetry adapted basis along the considered chain. As a result of this, the analytic form of the matrix elements of any operator in the enveloping algebra of the Sp(12,R), defining a certain transition operator, can be calculated. The procedure allows further applications of the symplectic IVBM for the description of transition probabilities between nuclear collective states.Comment: 6 page

    Unified dynamical symmetries in the symplectic extension of the interacting vector boson model

    Get PDF
    The algebraic Interacting Vector Boson Model (IVBM) is extended by exploiting three new subgroup chains in the reduction of its highest symplectic dynamical symmetry group Sp(12, R) to the physical angular momentum subgroup SO(3). The corresponding exactly solvable limiting cases are applied to achieve a description of complex nuclear collective spectra of even-even nuclei in the rare earth and actinide regions up to states of very high angular momentum. First we exploit two reductions in which collective modes can be mixed, and obtain successful descriptions of both positive and negative parity band conflgurations. The structure of band-head conflgurations, whose importance is established in the flrst two limits, is examined in a third reduction, that also provides important links between the subgroups of the other limits. © 2008 IOP Publishing Ltd

    Symplectic dynamical symmetries in algebraic models of nuclear structure

    Get PDF
    Based on a generalized reduction scheme for boson representations of symplectic algebras of the type Sp(4k,R), we consider the symplectic extension of a boson realization of compact unitary algebras for the k 1, k 3 and k 6 cases, which have relevance in nuclear structure theory. First we review an application of the k 1 case for the creation of a Sp(4, R) classification scheme, which is used for obtaining a generalized phenomenological description of important nuclear characteristics in terms of the classification quantum numbers for large sets of nuclei. Then for the k 3 and k 6 cases we outline some of the new possibilities that appear in the symplectic extensions of the Interacting Vector Boson Model (IVBM) and the Interacting Boson Model (IBM-2), respectively. The examples presented are used to describe the collective modes of the nuclear spectra in individual nuclei as well as in sequences of nuclei. © Published under licence by IOP Publishing Ltd
    corecore