2,356 research outputs found
Update of High Resolution (e,e'K^+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A
Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A
of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are
presented. The experiment provides high resolution spectra of excitation energy
for 12B_\Lambda, 16N_\Lambda, and 9Li_\Lambda hypernuclei obtained by
electroproduction of strangeness. A new theoretical calculation for
12B_\Lambda, final results for 16N_\Lambda, and discussion of the preliminary
results of 9Li_\Lambda are reported.Comment: 8 pages, 5 figures, submitted to the proceedings of Hyp-X Conferenc
Dominant BIN1-related centronuclear myopathy (CNM) revealed by lower limb myalgia and moderate CK elevation
We report a BIN1-related CNM family with unusual clinical phenotype. The proband, a 56-year-old man suffered of lower limbs myalgia since the age of 52. Clinical examination showed short stature, mild symmetric eyelid ptosis without ophthalmoplegia, scapular winging and Achilles tendon retraction. A muscle weakness was not noted. CK levels were up to 350 UI/L. Deltoid muscle biopsy showed nuclear centralization and clustering, deep sarcolemmal invaginations and type 1 fiber hypotrophy. Whole body MRI revealed fatty infiltration of posterior legs compartments, lumbar paraspinal and serratus muscles. Myotonic dystrophy type1 and 2, Pompe disease and MTM1 and DNM2-related CNM were ruled out. By sequencing BIN1, we identified a heterozygous pathogenic mutation [c.107C > A (p.A36E)], and we demonstrate that the mutation strongly impairs the membrane tubulation property of the protein. One affected sister carried the same mutation. Her clinical examination and muscle MRI revealed a similar phenotype. Our findings expand the clinical and genetic spectrum of the autosomal dominant CNM associated with BIN1 mutations
Plasma deposition of constrained layer damping coatings
Plasma techniques are used to generate constrained layer damping (CLD) coatings on metallic substrates. The process involves the deposition of relatively thick, hard ceramic layers on to soft polymeric damping materials while maintaining the integrity of both layers. Reactive plasma sputter-deposition from an aluminium alloy target is used to deposit alumina layers, with Young's modulus in the range 77-220GPa and thickness up to 335 μ, on top of a silicone film. This methodology is also used to deposit a 40 μ alumina layer on a conventional viscoelastic damping film to produce an integral damping coating. Plasma CLD systems are shown to give at least 50 per cent more damping than equivalent metal-foil-based treatments. Numerical methods for rapid prediction of the performance of such coatings are discussed and validated by comparison with experimental results
- …
