6 research outputs found

    miR-146a-5p impairs melanoma resistance to kinase inhibitors by targeting COX2 and regulating NFkB-mediated inflammatory mediators

    Get PDF
    BACKGROUND: Targeted therapy with BRAF and MEK inhibitors has improved the survival of patients with BRAF-mutated metastatic melanoma, but most patients relapse upon the onset of drug resistance induced by mechanisms including genetic and epigenetic events. Among the epigenetic alterations, microRNA perturbation is associated with the development of kinase inhibitor resistance. Here, we identified and studied the role of miR-146a-5p dysregulation in melanoma drug resistance.METHODS: The miR-146a-5p-regulated NFkB signaling network was identified in drug-resistant cell lines and melanoma tumor samples by expression profiling and knock-in and knock-out studies. A bioinformatic data analysis identified COX2 as a central gene regulated by miR-146a-5p and NFkB. The effects of miR-146a-5p/COX2 manipulation were studied in vitro in cell lines and with 3D cultures of treatment-resistant tumor explants from patients progressing during therapy.RESULTS: miR-146a-5p expression was inversely correlated with drug sensitivity and COX2 expression and was reduced in BRAF and MEK inhibitor-resistant melanoma cells and tissues. Forced miR-146a-5p expression reduced COX2 activity and significantly increased drug sensitivity by hampering prosurvival NFkB signaling, leading to reduced proliferation and enhanced apoptosis. Similar effects were obtained by inhibiting COX2 by celecoxib, a clinically approved COX2 inhibitor.CONCLUSIONS: Deregulation of the miR-146a-5p/COX2 axis occurs in the development of melanoma resistance to targeted drugs in melanoma patients. This finding reveals novel targets for more effective combination treatment. Video Abstract

    RNA polymerase i transcription is modulated by spatial learning in different brain regions

    No full text
    Long-term memory is accompanied by changes in neuronal morphology and connectivity. These alterations are thought to depend upon new gene expression and protein synthesis over a distributed network of brain structures. Although, much evidence supports the idea that the creation of stable, persistent memory traces requires synthesis of new proteins, the role of rRNA transcription and nucleolar activity in learning and memory has hardly been explored. rRNAs needed for protein synthesis result from the activity of two different RNA polymerases, RNA polymerase I and RNA polymerase III, transcribing for 47S RNA and 5S RNA respectively. In this study we first investigated the effects of spatial training in the Morris water maze on 47S RNA transcription in the central nervous system, demonstrating bi-directional modulation of its expression over a distributed neural network. We found learning induced increases in the nucleolar organizer regions in the hippocampus. Finally we demonstrated that intra-hippocampal administrations of CX-5461 (0.6μg/side), the specific RNA Polymerase I inhibitor, impair the ability of mice to locate the platform in the same task. These results suggest that de novo rRNA transcription is a necessary step for spatial memory consolidation and that after learning it occurs in several brain regions with a complex spatio-temporal dynamic

    Integrative Transcriptomic Analysis Reveals Distinctive Molecular Traits and Novel Subtypes of Collecting Duct Carcinoma

    No full text
    Collecting duct carcinoma (CDC) is a rare and highly aggressive kidney cancer subtype with poor prognosis and no standard treatments. To date, only a few studies have examined the transcriptomic portrait of CDC. Through integration of multiple datasets, we compared CDC to normal tissue, upper-tract urothelial carcinomas, and other renal cancers, including clear cell, papillary, and chromophobe histologies. Association between CDC gene expression signatures and in vitro drug sensitivity data was evaluated using the Cancer Therapeutic Response Portal, Genomics of Drug Sensitivity in Cancer datasets, and connectivity map. We identified a CDC-specific gene signature that predicted in vitro sensitivity to different targeted agents and was associated to worse outcome in clear cell renal cell carcinoma. We showed that CDC are transcriptionally related to the principal cells of the collecting ducts providing evidence that this tumor originates from this normal kidney cell type. Finally, we proved that CDC is a molecularly heterogeneous disease composed of at least two subtypes distinguished by cell signaling, metabolic and immune-related alterations. Our findings elucidate the molecular features of CDC providing novel biological and clinical insights. The identification of distinct CDC subtypes and their transcriptomic traits provides the rationale for patient stratification and alternative therapeutic approaches

    Integrated Molecular and Immune Phenotype of HER2-Positive Breast Cancer and Response to Neoadjuvant Therapy: A NeoALTTO Exploratory Analysis

    No full text
    Purpose: Little is known about the efficacy of HER2-targeted therapy in patients with breast cancer showing different HER2- pathway dependence and immune phenotypes. Herein, we report a NeoALTTO exploratory analysis evaluating the clinical value of 22 types of tumor-infiltrating immune cells by CIBERSORT and 5 immune-related metagenes in the overall patient population, and in subgroups defined by the TRAR classifier as HER2-addicted (TRAR-low) or not (TRAR-high). Patients and Methods: Association of baseline TRAR, immunerelated metagenes, and CIBERSORT data with pathologic complete response (pCR) and event-free survival (EFS) were assessed using logistic and Cox regression models. Corrections for multiple testing were performed by the Bonferroni method. Results: A total of 226 patients were analyzed: 80 (35%) achieved a pCR, and 64 (28%) experienced a relapse with a median follow-up of 6.7 (interquartile range 6.1-6.8) years; 108 cases were classified as TRAR-low, and 118 TRAR-high. Overall, gd T-cell fraction [OR 2.69; 95% confidence interval (CI), 1.40-5.18], and no immune-related metagenes were predictive of pCR. Notably, lymphocyte-specific kinase (LCK) predicted pCR to combination (OR 2.53; 95% CI, 1.12-5.69), but not to single-agent trastuzumab or lapatinib [OR 0.74; 95% CI, 0.45- 1.22 (Pinteraction 0.01)]. Integrating LCK with gd T cells in a multivariate model added to the discriminatory capability of clinical and molecular variables with a shift in AUC from 0.80 (95% CI, 0.74-0.86) to 0.83 (95% CI, 0.78-0.89). In TRAR-low cases, activated mast cells, IFN and MHCII were reduced, and STAT1, HCK1, and gd T cells were associated with pCR. STAT1 was broadly associated with improved EFS regardless of pCR, and nodal status in overall (HR 0.68; 95% CI, 0.49-0.94) and in TRAR-low cases (HR 0.50; 95% CI, 0.30-0.86). Conclusions: Immuno-phenotyping holds the promise to complement current predictive models in HER2-positive breast cancer and to assist in new therapeutic development. _2021 American Association for Cancer Research.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Circulating miRNAs as Novel Non-Invasive Biomarkers to Aid the Early Diagnosis of Suspicious Breast Lesions for Which Biopsy Is Recommended

    No full text
    In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. miRNAs were analyzed by OpenArray in a retrospective cohort of plasma samples including 100 patients with malignant (T), 89 benign disease (B), and 99 healthy donors (HD) divided into training and testing sets and a prospective cohort (BABE) of 289 women with suspicious imaging findings who underwent tissue biopsy. miRNAs associated with disease status were identified by univariate analysis and then combined into signatures by multivariate logistic regression models. By combining 16 miRNAs differentially expressed in the T vs. HD comparison, 26 signatures were also able to significantly discriminate T from B disease. Seven of them, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were statistically validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 were confirmed in the prospective BABE Cohort. This study identified 5 circulating miRNAs that, properly combined, distinguish malignant from benign breast disease in women with a high likelihood of malignancy

    Multistep tumor genetic evolution and changes in immunogenicity trigger immune-mediated disease eradication in stage IV melanoma: lessons from a single case

    No full text
    Durable remissions are observed in 10%–20% of treated patients with advanced metastatic melanoma but the factors associated with long-term complete clinical responses are largely unknown. Here, we report the molecular characteristics of tumor evolution during disease progression along a 9-year clinical course in a patient with advanced disseminated melanoma who received different treatments, including trametinib, ipilimumab, radiation, vemurafenib, surgical tumor debulking and a second ipilimumab course, ultimately achieving complete long-term disease remission.Longitudinal analyses of therapies-resistant metastatic tumors revealed the effects of different treatments on tumor’s microenvironment and immunogenicity, ultimately creating a milieu favorable to immunotherapy response. Monitoring of the temporal dynamics of T cells by analysis of the T cell receptor (TCR) repertoire in the tumor and peripheral blood during disease evolution indicated that T-cell clones with common TCR rearrangements, present at low levels at baseline, were maintained and expanded after immunotherapy, and that TCR diversity increased. Analysis of genetic, molecular, and cellular components of the tumor depicted a multistep process in which treatment with kinase inhibitors strongly conditioned the immune microenvironment creating an inflamed milieu converting cold into hot tumors, while ipilimumab impacted and increased the TCR repertoire, a requirement for tumor rejection.Since the optimal sequencing of treatment with antibodies targeting immune checkpoints and kinase inhibitors for advanced melanoma is still clinically debated, this case indicates that immunotherapy success is possible even after progression on targeted therapy
    corecore