4 research outputs found

    Multi-objective optimization based optimal sizing & placement of multiple distributed generators for distribution network performance improvement

    No full text
    Integration of Distributed Generations (DGs) into radial distribution network (RDN) is an emerging need to explore the benefits of renewable energy sources (RES). Increasing penetration of RES based DGs in RDN without proper planning leads to several operational problems such as excessive energy losses, poor voltage quality and load balancing. Hence, in this work, multi-objective optimization (MOO) problem is formulated by carefully chosen three conflicting objectives such as power loss minimization, enhancement of load balancing index (LBI) and aggregate voltage deviation index (AVDI). Teaching-Learning-Based-Optimization (TLBO) is used to optimize MOO problem considering placement of DGs at multiple locations in RDN satisfying the constraints on bus voltage magnitude, branch flows and DG size. Comprehensive simulation studies have been carried out to obtain optimal performance for 69-nodes RDN with the increasing penetration of DGs at multiple locations. It is shown that determination of optimal sizing of DGs at multiple locations in RDN with MOO results in lesser power losses, improved voltage profiles and better load balancing as compared to placement of single DG in RDN. Performance measures such as spacing and spread indicators are used for characterizing Pareto solutions for MOO problem. Such set of non-dominated solutions obtained from Pareto front during multi-objective TLBO gives proper guidelines to the utility operator about sizing and placement of DGs based on the assigned priorities to the objectives

    Ultrahigh Mobility in an Organic Semiconductor by Vertical Chain Alignment

    Get PDF
    A method to produce highly efficient and long range vertical charge transport is demonstrated in an undoped polythiophene thin film, with average mobilities above 3.1 cm(2) V(-1) s(-1) . These record high mobilities are achieved by controlled orientation of the polymer crystallites enabling the most efficient and fastest charge transport along the chain backbones and across multiple chains. The significant increase in mobility shown here may present a new route to producing faster and more efficient optoelectronic devices based on organic materials

    Abstracts of Scientifica 2022

    No full text
    This book contains the abstracts of the papers presented at Scientifica 2022, Organized by the Sancheti Institute College of Physiotherapy, Pune, Maharashtra, India, held on 12–13 March 2022. This conference helps bring researchers together across the globe on one platform to help benefit the young researchers. There were six invited talks from different fields of Physiotherapy and seven panel discussions including over thirty speakers across the globe which made the conference interesting due to the diversity of topics covered during the conference. Conference Title:  Scientifica 2022Conference Date: 12–13 March 2022Conference Location: Sancheti Institute College of PhysiotherapyConference Organizer: Sancheti Institute College of Physiotherapy, Pune, Maharashtra, Indi
    corecore