19 research outputs found

    Massive thymic hemorrhage and hemothorax occurring in utero

    Get PDF
    Background: Thymic enlargement is a common and physiological finding in children and neonates' X-rays, but it is usually asymptomatic. Occasionally it can cause respiratory distress. In most cases the aetiology of this expansion remains unclear and it is diagnosed as a thymic hyperplasia. True thymic hyperplasia is defined as a gland expansion, both in size and weight, while maintaining normal microscopic architecture. Often it is a diagnosis of exclusion and prognosis is good. Thymic haemorrhage is an unusual condition related to high foetal and neonatal mortality. Case Presentation: We report a case of spontaneous massive thymic haemorrhage in a newborn developing at birth acute respiratory distress associated with severe bilateral haemothorax. Thymic enlargement was evident after pleural evacuation and confirmed by radiographic, Computed Tomography (CT) images and Magnetic Resonance Imaging (MRI) sequences. The spontaneous resolution of this enlargement seen with CT scan and MRI sequences suggested a thymic haemorrhage; surgery was not necessary. Conclusion: Thymic haemorrhage should be considered in newborn infants with pleural effusion, mediastinal space enlargement and Respiratory Distress

    Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications.

    Full text link
    peer reviewedaudience: researcher, professionalGermline mutations of the aryl hydrocarbon receptor (AHR)-interacting protein (AIP) gene confer a predisposition to pituitary adenomas (PA), usually in the setting of familial isolated PA. To provide further insights into the possible role of AIP in pituitary tumour pathogenesis, the expression of AIP and AHR was determined by real-time RT-PCR and/or immunohistochemistry (IHC) in a large series of PA (n=103), including 17 with AIP mutations (AIP(mut)). Variable levels of AIP and AHR transcripts were detected in all PA, with a low AHR expression (P<0.0001 versus AIP). Cytoplasmic AIP and AHR were detected by IHC in 84.0 and 38.6% of PA respectively, and significantly correlated with each other (P=0.006). Nuclear AHR was detected in a minority of PA (19.7%). The highest AIP expression was observed in somatotrophinomas and non-secreting (NS) PA, and multivariate analysis in somatotrophinomas showed a significantly lower AIP immunostaining in invasive versus non-invasive cases (P=0.019). AIP expression was commonly low in other secreting PA. AIP immunostaining was abolished in a minority of AIP(mut) PA, with a frequent loss of cytoplasmic AHR and no evidence of nuclear AHR. In contrast, AIP overexpression in a subset of NS PA could be accompanied by nuclear AHR immunopositivity. We conclude that down-regulation of AIP and AHR may be involved in the aggressiveness of somatotrophinomas. Overall, IHC is a poorly sensitive tool for the screening of AIP mutations. Data obtained on AHR expression suggest that AHR signalling may be differentially affected according to PA phenotype

    Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications.

    Full text link
    Germline mutations of the aryl hydrocarbon receptor (AHR)-interacting protein (AIP) gene confer a predisposition to pituitary adenomas (PA), usually in the setting of familial isolated PA. To provide further insights into the possible role of AIP in pituitary tumour pathogenesis, the expression of AIP and AHR was determined by real-time RT-PCR and/or immunohistochemistry (IHC) in a large series of PA (n=103), including 17 with AIP mutations (AIP(mut)). Variable levels of AIP and AHR transcripts were detected in all PA, with a low AHR expression (P<0.0001 versus AIP). Cytoplasmic AIP and AHR were detected by IHC in 84.0 and 38.6% of PA respectively, and significantly correlated with each other (P=0.006). Nuclear AHR was detected in a minority of PA (19.7%). The highest AIP expression was observed in somatotrophinomas and non-secreting (NS) PA, and multivariate analysis in somatotrophinomas showed a significantly lower AIP immunostaining in invasive versus non-invasive cases (P=0.019). AIP expression was commonly low in other secreting PA. AIP immunostaining was abolished in a minority of AIP(mut) PA, with a frequent loss of cytoplasmic AHR and no evidence of nuclear AHR. In contrast, AIP overexpression in a subset of NS PA could be accompanied by nuclear AHR immunopositivity. We conclude that down-regulation of AIP and AHR may be involved in the aggressiveness of somatotrophinomas. Overall, IHC is a poorly sensitive tool for the screening of AIP mutations. Data obtained on AHR expression suggest that AHR signalling may be differentially affected according to PA phenotype

    Nature-Based Options for Improving Urban Environmental Quality: Using Black Poplar Trees for Monitoring Heavy Metals Pollution in Urbanized Contexts

    No full text
    Several researchers recognize the importance of plants as effective tools for environmental biomonitoring. The black poplar (Populus nigra L.) often emerges as a useful bioindicator of air quality in urban environments, where this tree species is widely employed for urban areas. Here, we used ICP-MS analysis to assess the presence and concentration of trace elements, with a special focus on heavy metals (HMs), in black poplar leaves and soil samples from three urbanized sites showing varying degrees of environmental quality. Specifically, the foliar concentrations of Zn (173.3 ppm), Cd (0.7 ppm), Co (1.1 ppm) and As (0.2 ppm) exceeded reference values for unpolluted sites, indicating potential environmental hazards. Additionally, we correlated the foliar concentrations of HMs with those quantified in soil and with air quality data provided by the regional air quality-monitoring network. Subsequently, we estimated the values of foliar fluctuating asymmetry, and evaluated their relationships with HM concentrations in both leaves and soil. Our results suggest that element concentrations in black poplar leaves are related to soil contamination and atmospheric quality, and the extent depends on the proximity to relevant pollution sources. Furthermore, the study species showed a pronounced accumulation capacity for some HMs (i.e., Zn, Cd) commonly found in particulate matter. The extent of foliar fluctuating asymmetry is related to atmospheric quality and HM soil concentration, possibly because of the growth anomalies induced by this kind of environmental contamination. Overall, our data indicate the study species can supply an effective biomonitoring service in urbanized contexts, offering valuable insights into the occurrence and biological implications of heavy metal contamination
    corecore