12,722 research outputs found

    Berry-phase blockade in single-molecule magnets

    Full text link
    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that in the case of incoherent spin states it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the stationary current, which exhibits topological zeros as a function of the transverse magnetic field.Comment: 4 pages, Revtex 4, 4 EPS figure

    Covering problems in edge- and node-weighted graphs

    Full text link
    This paper discusses the graph covering problem in which a set of edges in an edge- and node-weighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.Comment: To appear in SWAT 201

    Evaluation of CNN-based Single-Image Depth Estimation Methods

    Get PDF
    While an increasing interest in deep models for single-image depth estimation methods can be observed, established schemes for their evaluation are still limited. We propose a set of novel quality criteria, allowing for a more detailed analysis by focusing on specific characteristics of depth maps. In particular, we address the preservation of edges and planar regions, depth consistency, and absolute distance accuracy. In order to employ these metrics to evaluate and compare state-of-the-art single-image depth estimation approaches, we provide a new high-quality RGB-D dataset. We used a DSLR camera together with a laser scanner to acquire high-resolution images and highly accurate depth maps. Experimental results show the validity of our proposed evaluation protocol

    Bell's inequality for n spin-s particles

    Get PDF
    The Mermin-Klyshko inequality for n spin-1/2 particles and two dichotomic observables is generalized to n spin-s particles and two maximal observables. It is shown that some multiparty multilevel Greenberger-Horne-Zeilinger states [A. Cabello, Phys. Rev. A 63, 022104 (2001)] maximally violate this inequality for any s. For a fixed n, the magnitude of the violation is constant for any s, which provides a simple demonstration and generalizes the conclusion reached by Gisin and Peres for two spin-s particles in the singlet state [Phys. Lett. A 162, 15 (1992)]. For a fixed s, the violation grows exponentially with n, which provides a generalization to any s of Mermin's conclusion for n spin-1/2 particles [Phys. Rev. Lett. 65, 1838 (1990)].Comment: REVTeX4, 4 page

    The high-pressure behavior of CaMoO4

    Full text link
    We report a high-pressure study of tetragonal scheelite-type CaMoO4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density-functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMoO4. We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependences of the Raman-active and infrared-active modes. In addition, based upon calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMoO4. The reported results are of interest for the many technological applications of this oxide.Comment: 36 pages, 10 figures, 8 table

    Magnetic quantum coherence effect in Ni4 molecular transistors

    Full text link
    We consider the electron transport in single molecule magnet transistors in the presence of Zeeman spin splitting and magnetic quantum coherence (MQC). The Zeeman interaction is extended along the leads, thereby producing gaps in the energy spectrum which allow electron transport with spin polarized along a certain direction. The MQC induces an effective coupling between localized spin states and continuum spin states in the single molecule magnet and leads, respectively. We investigate the conductance at zero temperature as a function of the applied bias and magnetic field, and show that the MQC is responsible for the appearence of resonances. Accordingly, we name them MQC resonances.Comment: 5 pages, Revtex

    RNA matrix models with external interactions and their asymptotic behaviour

    Full text link
    We study a matrix model of RNA in which an external perturbation acts on n nucleotides of the polymer chain. The effect of the perturbation appears in the exponential generating function of the partition function as a factor (1nαL)(1-\frac{n\alpha}{L}) [where α\alpha is the ratio of strengths of the original to the perturbed term and L is length of the chain]. The asymptotic behaviour of the genus distribution functions for the extended matrix model are analyzed numerically when (i) n=Ln=L and (ii) n=1n=1. In these matrix models of RNA, as nα/Ln\alpha/L is increased from 0 to 1, it is found that the universality of the number of diagrams aL,ga_{L, g} at a fixed length L and genus g changes from 3L3^{L} to (3nαL)L(3-\frac{n\alpha}{L})^{L} (2L2^{L} when nα/L=1n\alpha/L=1) and the asymptotic expression of the total number of diagrams N\cal N at a fixed length L but independent of genus g, changes in the factor expL\exp^{\sqrt{L}} to exp(1nαL)L\exp^{(1-\frac{n\alpha}{L})\sqrt{L}} (exp0=1exp^{0}=1 when nα/L=1n\alpha/L=1)Comment: 9 pages, 5 figures, 2 table

    Tunneling of a large spin via hyperfine interactions

    Full text link
    We consider a large spin \bf S in the magnetic field parallel to the uniaxial crystal field, interacting with N >> 1 nuclear spins \bf I_i via Hamiltonian \cal H = -DS_z^2 - H_zS_z+ A{\bf S}\cdot \sum_{i=1}^N {\bf I}_i with A << D, at temperature T. Tunneling splittings and the selection rules for the resonant values of H_z are obtained perturbatively. The quantum coherence exists at T << ASI while at T >= ASI the coherence is destroyed and the relaxation of \bf S is described by a stretched dependence which can be close to log t under certain conditions. Relevance to Mn-12 acetate is discussed.Comment: 5 PR pages, 4 figures, submitted to PR

    Quantum phase interference and spin parity in Mn12 single-molecule magnets

    Full text link
    Magnetization measurements of Mn12 molecular nanomagnets with spin ground states of S = 10 and S = 19/2 showresonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Spin-parity dependent tunneling is established by comparing the quantum phase interference of integer and half-integer spin systems.Comment: 5 pages, 5 figure
    corecore