8 research outputs found

    Reinforced Approximate Exploratory Data Analysis

    Full text link
    Exploratory data analytics (EDA) is a sequential decision making process where analysts choose subsequent queries that might lead to some interesting insights based on the previous queries and corresponding results. Data processing systems often execute the queries on samples to produce results with low latency. Different downsampling strategy preserves different statistics of the data and have different magnitude of latency reductions. The optimum choice of sampling strategy often depends on the particular context of the analysis flow and the hidden intent of the analyst. In this paper, we are the first to consider the impact of sampling in interactive data exploration settings as they introduce approximation errors. We propose a Deep Reinforcement Learning (DRL) based framework which can optimize the sample selection in order to keep the analysis and insight generation flow intact. Evaluations with 3 real datasets show that our technique can preserve the original insight generation flow while improving the interaction latency, compared to baseline methods.Comment: Appears in the 37th AAAI Conference on Artificial Intelligence (AAAI), 202

    Outage-Watch: Early Prediction of Outages using Extreme Event Regularizer

    Full text link
    Cloud services are omnipresent and critical cloud service failure is a fact of life. In order to retain customers and prevent revenue loss, it is important to provide high reliability guarantees for these services. One way to do this is by predicting outages in advance, which can help in reducing the severity as well as time to recovery. It is difficult to forecast critical failures due to the rarity of these events. Moreover, critical failures are ill-defined in terms of observable data. Our proposed method, Outage-Watch, defines critical service outages as deteriorations in the Quality of Service (QoS) captured by a set of metrics. Outage-Watch detects such outages in advance by using current system state to predict whether the QoS metrics will cross a threshold and initiate an extreme event. A mixture of Gaussian is used to model the distribution of the QoS metrics for flexibility and an extreme event regularizer helps in improving learning in tail of the distribution. An outage is predicted if the probability of any one of the QoS metrics crossing threshold changes significantly. Our evaluation on a real-world SaaS company dataset shows that Outage-Watch significantly outperforms traditional methods with an average AUC of 0.98. Additionally, Outage-Watch detects all the outages exhibiting a change in service metrics and reduces the Mean Time To Detection (MTTD) of outages by up to 88% when deployed in an enterprise cloud-service system, demonstrating efficacy of our proposed method.Comment: Accepted to ESEC/FSE 202

    ESRO: Experience Assisted Service Reliability against Outages

    Full text link
    Modern cloud services are prone to failures due to their complex architecture, making diagnosis a critical process. Site Reliability Engineers (SREs) spend hours leveraging multiple sources of data, including the alerts, error logs, and domain expertise through past experiences to locate the root cause(s). These experiences are documented as natural language text in outage reports for previous outages. However, utilizing the raw yet rich semi-structured information in the reports systematically is time-consuming. Structured information, on the other hand, such as alerts that are often used during fault diagnosis, is voluminous and requires expert knowledge to discern. Several strategies have been proposed to use each source of data separately for root cause analysis. In this work, we build a diagnostic service called ESRO that recommends root causes and remediation for failures by utilizing structured as well as semi-structured sources of data systematically. ESRO constructs a causal graph using alerts and a knowledge graph using outage reports, and merges them in a novel way to form a unified graph during training. A retrieval-based mechanism is then used to search the unified graph and rank the likely root causes and remediation techniques based on the alerts fired during an outage at inference time. Not only the individual alerts, but their respective importance in predicting an outage group is taken into account during recommendation. We evaluated our model on several cloud service outages of a large SaaS enterprise over the course of ~2 years, and obtained an average improvement of 27% in rouge scores after comparing the likely root causes against the ground truth over state-of-the-art baselines. We further establish the effectiveness of ESRO through qualitative analysis on multiple real outage examples.Comment: Accepted to 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023
    corecore