12 research outputs found

    Genetic testing of canine degenerative myelopathy in the South African Boxer dog population

    Get PDF
    Canine degenerative myelopathy (DM) is a progressive disease process that is diagnosed late in life and mainly affects the pelvic limbs. Factors that make an ante-mortem definitive diagnosis of DM include: an insidious onset and clinical manifestation that mimics other disease processes of the pelvic limbs (hip dysplasia, cranial cruciate ligament rupture, etc.) or there may even be concurrent disease processes, old-age onset and lack of reliable diagnostic methods. Until recently, South African dog owners had to submit samples to laboratories overseas for genetic testing in order to confirm an affected dog (homozygous A/A) and to aid in the ante-mortem diagnosis of DM. Only affected dogs have been confirmed to manifest the clinical signs of DM. This study aimed to verify whether genetic testing by a local genetic laboratory was possible in order to detect a missense mutation of the superoxide dismutase gene (SOD1) that is implicated in causing the clinical signs of DM. The study also aimed to detect and map the inheritance of this disease process in a local Boxer dog population where the pedigree of the sampled population was known. Venous blood collected from Boxer dogs using a simple random sampling technique. The samples were genotyped for the SOD1:c.118G>A polymorphism. Carrier and affected Boxer dogs were detected. A pedigree that demonstrated the significance of inheriting a carrier or affected state in the population was mapped. The present study concludes that genotyping of the missense mutation in Boxer dogs is possible in South Africa. There are carrier and affected Boxer dogs in the local population, making DM a plausible diagnosis in aged dogs presenting with pelvic limb pathology

    Aortic arch baroreceptor stimulation in an experimental goat model: a novel method to lower blood pressure

    Get PDF
    The effect of aortic baroreceptor stimulation on blood pressure manipulation was assessed using the goat species Capra aegagrus hircus. The aim of this study was to manipulate blood pressure with future intention to treat high blood pressure in humans. The ages of the animals ranged from 6 months to 2 years. A standard anesthesia protocol was used. A lateral thoracotomy was performed to gain access to the aortic arch. Data was collected with the Vigileo system. Pre stimulation blood pressure was compared with maximum post stimulation blood pressure values. Results were analyzed with the Wilcoxon signed rank test. In the study 38 animals were enrolled. Baroreceptor stimulation was performed for each animal using 3 different electrodes each of which emits an electrical impulse. In the pilot phase of the study, the median baseline blood pressure prior to stimulation of the baroreceptors was 110.8 mmHg. After stimulation the median blood pressure decreased to 88 mmHg. The average decrease in blood pressure was 22.8 mmHg. This decrease of blood pressure after stimulation of the baroreceptors is statistically significant (p < 0.0001) and the proof of concept was shown. During the extended phase all three probes had a significant effect on blood pressure lowering (p < 0.0001). The study confirmed that aortic baroreceptor stimulation has an effect on blood pressure lowering. This is a novel field of blood pressure manipulation. The hemodynamic effects of long-term aortic baroreceptor stimulation are unknown. Further investigations need to be done to determine whether a similar effect can be induced in different species such as primates and humans

    CAPTIVE MANAGEMENT OF WILD IMPALA ( AEPYCEROS MELAMPUS

    No full text

    Blood acid-base status in impala (Aepyceros melampus) immobilised and maintained under total intravenous anaesthesia using two different drug protocols

    Get PDF
    Abstract Background In mammals, homeostasis and survival are dependent on effective trans-membrane movement of ions and enzyme function, which are labile to extreme acid-base changes, but operate efficiently within a narrow regulated pH range. Research in patients demonstrating a pH shifts outside the narrow regulated range decreased the cardiac output and systemic vascular resistance and altered the oxygen binding to haemoglobin. These cardiopulmonary observations may be applicable to the risks associated with anaesthesia and performance of wildlife ungulates on game farms. The aim of this study was to compare blood pH changes over time in impala immobilised and anaesthetised with two different drug protocols (P-TMP - immobilisation: thiafentanil-medetomidine; maintenance: propofol-ketamine-medetomidine; P-EME – immobilisation: etorphine-medetomidine; maintenance: etorphine-ketamine-medetomidine). Additionally, we discuss the resultant blood pH using both the Henderson-Hasselbalch and the Stewart approaches. Two data collection time points were defined, Time1 before maintenance of general anaesthesia and Time 2 at end of maintenance of general anaesthesia. We hypothesise that blood pH would not be different between drug protocols and would not change over time. Results Significant differences were detected over time but not between the two drug protocols. Overall, the blood pH decreased over time from 7.37 ± 0.04 to 7.31 ± 0.05 (p = 0.001). Overall, over time arterial partial pressure of carbon dioxide changed from 51.3 ± 7.5 mmHg to 72.6 ± 12.4 mmHg (p < 0.001); strong ion difference from 44.6 ± 2.4 mEq/L to 46.9 ± 3.1 mEq/L (p < 0.001); anion gap from 15.0 ± 3.1 mEq/L to 10.9 ± 2.2 mEq/L (p < 0.001); and total weak acids from 16.1 ± 1.2 mmol/L to 14.0 ± 1.1 mmol/L (p < 0.001). The bicarbonate changed from 29.6 ± 2.7 mEq/L to 36.0 ± 4.1 mEq/L (p < 0.001); and lactate changed from 2.9 ± 1.5 mEq/L to 0.3 ± 0.03 mEq/L (p < 0.001) over time. Conclusions The profound increase in the partial pressure of carbon dioxide that worsened during the total intravenous anaesthesia in both protocols initiated a substantial metabolic compensatory response to prevent severe acidaemia. This compensation resulted in a clinically acceptable mild acidaemic state, which worsened over time but not between the protocols, in healthy impala. However, these important compensatory mechanisms require normal physiological function and therefore when immobilising ill or anorexic wild ungulates their acid-base status should be carefully assessed

    The effects of midazolam and butorphanol, administered alone or combined, on the dose and quality of anaesthetic induction with alfaxalone in goats

    No full text
    Goats are rarely anaesthetised; consequently, scant information is available on the efficacy of anaesthetic drugs in this species. Alfaxalone is a relatively new anaesthetic agent, of which the efficacy in goats has not yet been studied. In this study, the sedative and alfaxalonesparing effects of midazolam and butorphanol, administered alone or concomitantly, in goats were assessed. Eight clinically healthy goats, four does and four wethers, were enlisted in a randomised crossover manner to receive intramuscular sedative treatments consisting of saline 0.05 mL/kg, or midazolam 0.30 mg/kg, or butorphanol 0.10 mg/kg, or a combination ofmidazolam 0.30 mg/kg with butorphanol 0.10 mg/kg before intravenous induction of general anaesthesia with alfaxalone. Following induction, the goats were immediately intubated and the quality of anaesthesia and basic physiological cardiorespiratory and blood-gas parameters were assessed until the goats had recovered from anaesthesia. The degree of sedation, quality of induction and recovery were scored. When compared with saline (3.00 mg/kg), midazolam,administered alone or with butorphanol, caused a statistically significant increased level of sedation and a reduction in the amount of alfaxalone required for induction (2.00 mg/kg and 1.70 mg/kg, respectively). Butorphanol alone (2.30 mg/kg) did not cause significant changes in level of sedation or alfaxalone-induction dose. During induction and recovery, the goats were calm following all treatments, including the control group. Cardiorespiratory and blood gasparameters were maintained within clinically acceptable limits. The present study showed that midazolam, administered alone or combined with butorphanol, produces a degree of sedation that significantly reduces the dose of alfaxalone required for induction of general anaesthesia in goats, without causing any major adverse cardiorespiratory effects

    Anaesthetic induction and recovery characteristics of a diazepam-ketamine combination compared with propofol in dogs

    Get PDF
    Induction of anaesthesia occasionally has been associated with undesirable behaviour in dogs. High quality of induction of anaesthesia with propofol has been well described while in contrast variable induction and recovery quality has been associated with diazepam-ketamine. In this study, anaesthetic induction and recovery characteristics of diazepam-ketamine combination with propofol alone were compared in dogs undergoing elective orchidectomy. Thirty-six healthy adult male dogs were used. After habitus scoring (simple descriptive scale [SDS]), the dogs were sedated with morphine and acepromazine. Forty minutes later a premedication score (SDS) was allocated and general anaesthesia was induced using a combination of diazepam-ketamine (Group D/K) or propofol (Group P) and maintained with isoflurane. Scores for the quality of induction, intubation and degree of myoclonus were allocated (SDS). Orchidectomy was performed after which recovery from anaesthesia was scored (SDS) and times to extubation and standing were recorded. Data were analysed using descriptive statistics and Kappa Reliability and Kendall Tau B tests. Both groups were associated with acceptable quality of induction and recovery from anaesthesia. Group P, however, was associated with a poorer quality of induction (p = 0.014), prolonged induction period (p = 0.0018) and more pronounced myoclonus (p = 0.003), but had better quality of recovery (p = 0.000002) and shorter recovery times (p = 0.035) compared with Group D/K. Diazepam-ketamine and propofol are associated with acceptable induction and recovery from anaesthesia. Propofol had inferior anaesthetic induction characteristics, but superior and quicker recovery from anaesthesia compared with diazepam-ketamine

    Anaesthetic, analgesic and cardiorespiratory effects of intramuscular medetomidine-ketamine combination alone or with morphine or tramadol for orchiectomy in cats

    Get PDF
    Objectives: To compare the anaesthetic, analgesic and cardiorespiratory effects of intramuscular (IM) medetomidine and ketamine administered alone or combined with morphine or tramadol, for orchiectomy in cats. Study design: Randomised, blinded, prospective clinical study. Animals: Thirty client-owned cats. Materials and methods: Cats (n = 10 in each group) received a combination of medetomidine (60 μgkg−1) and ketamine (10 mg kg−1) alone (MedK); combined with morphine (0.2 mg kg−1) (MedKM), or combined with tramadol (2 mg kg−1) (MedKT) IM. Time of induction, surgical and recovery events were recorded, and physiological parameters measured and recorded. Analgesia was evaluated with a visual analogue scale, a composite scoring system and the von Frey mechanical threshold device, every hour from three to eight hours post-drug administration injection. Data were analyzed with a linear mixed model, Kruskal–Wallis or Chi-square tests (p < 0.05). Results: Median (IQR) induction and recovery times (minutes) were not significantly (p = 0.125) different between groups: 5.6 (2.7–8.0), 7.4 (5.1–9.6) and 8.0 (5.8–14.9) for induction and 128.5 (95.1–142.8), 166.4 (123.1–210.0) and 142.9 (123.4–180.2) for recovery, with MedK, MedKT and MedKM, respectively. Two cats (MedKM) required alfaxalone for endotracheal intubation. In all groups, three or four cats required additional isoflurane for surgery. Arterial oxygen tension overall (mean ± SD: 66 ± 2 mmHg) was low. Surgery resulted in increased systolic arterial blood pressure (p < 0.001), haemoglobin saturation (p < 0.001), respiratory (p = 0.003) and heart rates (p = 0.002). Pain scores did not differ significantly between groups. Von Frey responses decreased over time; changes over time varied by treatment (p < 0.001), MedK returning to baseline values more rapidly than MedKM and MedKT. No cat required rescue analgesics. Conclusion and clinical relevance: All three protocols can provide adequate anaesthesia and analgesia for orchiectomy in cats. However, rescue intervention to maintain surgical anaesthesia may be required in some cats. Oxygen supplementation is advised
    corecore