20,314 research outputs found

    Spin-exchange relaxation free magnetometry with Cs vapor

    Full text link
    We describe a Cs atomic magnetometer operating in the spin-exchange relaxation-free (SERF) regime. With a vapor cell temperature of 103∘C103^\circ\rm{C} we achieve intrinsic magnetic resonance widths ΔB=17μG\Delta B=17 {\rm \mu G} corresponding to an electron spin-relaxation rate of 300s−1300 {\rm s^{-1}} when the spin-exchange rate is ΓSE=14000s−1\Gamma_{SE}=14000 {\rm s^{-1}}. We also observe an interesting narrowing effect due to diffusion. Signal-to-noise measurements yield a sensitivity of about 400 pG/Hz400\thinspace{\rm pG/\sqrt{Hz}}. Based on photon shot noise, we project a sensitivity of 40pG/Hz40 {\rm pG/\sqrt{Hz}}. A theoretical optimization of the magnetometer indicates sensitivities on the order of 2pG/Hz2 {\rm pG/\sqrt{Hz}} should be achievable in a 1cm31 {\rm cm^3} volume. Because Cs has a higher saturated vapor pressure than other alkali metals, SERF magnetometers using Cs atoms are particularly attractive in applications requiring lower temperatures.Comment: 8 pages, 6 figures. submitted to PR

    Absence of anomalous negative lattice-expansion for polycrystalline sample of Tb2Ti2O7

    Full text link
    High resolution X-ray powder-diffraction experiments on a well-characterized polycrystalline sample of the spin liquid Tb2Ti2O7 reveal that it shows normal positive thermal-expansion above 4 K, which does not agree with the intriguing anomalous negative thermal-expansion due to a magneto-elastic coupling reported for a single crystal sample below 20 K. We also performed a Rietveld profile refinement of a powder-diffraction pattern taken at a room temperature, and confirmed that it is consistent with the fully ordered cubic pyrochlore structure.Comment: 2 pages, 3 figure

    Optimal static and dynamic recycling of defective binary devices

    Full text link
    The binary Defect Combination Problem consists in finding a fully working subset from a given ensemble of imperfect binary components. We determine the typical properties of the model using methods of statistical mechanics, in particular, the region in the parameter space where there is almost surely at least one fully-working subset. Dynamic recycling of a flux of imperfect binary components leads to zero wastage.Comment: 14 pages, 15 figure

    Magic numbers in the discrete tomography of cyclotomic model sets

    Full text link
    We report recent progress in the problem of distinguishing convex subsets of cyclotomic model sets Λ\varLambda by (discrete parallel) X-rays in prescribed Λ\varLambda-directions. It turns out that for any of these model sets Λ\varLambda there exists a `magic number' mΛm_{\varLambda} such that any two convex subsets of Λ\varLambda can be distinguished by their X-rays in any set of mΛm_{\varLambda} prescribed Λ\varLambda-directions. In particular, for pentagonal, octagonal, decagonal and dodecagonal model sets, the least possible numbers are in that very order 11, 9, 11 and 13.Comment: 6 pages, 1 figure; based on the results of arXiv:1101.4149 [math.MG]; presented at Aperiodic 2012 (Cairns, Australia

    Correlations between hidden units in multilayer neural networks and replica symmetry breaking

    Full text link
    We consider feed-forward neural networks with one hidden layer, tree architecture and a fixed hidden-to-output Boolean function. Focusing on the saturation limit of the storage problem the influence of replica symmetry breaking on the distribution of local fields at the hidden units is investigated. These field distributions determine the probability for finding a specific activation pattern of the hidden units as well as the corresponding correlation coefficients and therefore quantify the division of labor among the hidden units. We find that although modifying the storage capacity and the distribution of local fields markedly replica symmetry breaking has only a minor effect on the correlation coefficients. Detailed numerical results are provided for the PARITY, COMMITTEE and AND machines with K=3 hidden units and nonoverlapping receptive fields.Comment: 9 pages, 3 figures, RevTex, accepted for publication in Phys. Rev.

    Laboratory studies in ultraviolet solar physics

    Get PDF
    The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided

    A polynomial training algorithm for calculating perceptrons of optimal stability

    Full text link
    Recomi (REpeated COrrelation Matrix Inversion) is a polynomially fast algorithm for searching optimally stable solutions of the perceptron learning problem. For random unbiased and biased patterns it is shown that the algorithm is able to find optimal solutions, if any exist, in at worst O(N^4) floating point operations. Even beyond the critical storage capacity alpha_c the algorithm is able to find locally stable solutions (with negative stability) at the same speed. There are no divergent time scales in the learning process. A full proof of convergence cannot yet be given, only major constituents of a proof are shown.Comment: 11 pages, Latex, 4 EPS figure

    Intraoral Microbial Metabolism and Association with Host Taste Perception

    Get PDF
    Metabolomics has been identified as a means of functionally assessing the net biological activity of a particular microbial community. Considering the oral microbiome, such an approach remains largely underused. While the current knowledge of the oral microbiome is constantly expanding, there are several deficits in knowledge particularly relating to their interactions with their host. This work uses nuclear magnetic resonance spectroscopy to investigate metabolic differences between oral microbial metabolism of endogenous (i.e., salivary protein) and exogenous (i.e., dietary carbohydrates) substrates. It also investigated whether microbial generation of different metabolites may be associated with host taste perception. This work found that in the absence of exogenous substrate, oral bacteria readily catabolize salivary protein and generate metabolic profiles similar to those seen in vivo. Important metabolites such as acetate, butyrate, and propionate are generated at relatively high concentrations. Higher concentrations of metabolites were generated by tongue biofilm compared to planktonic salivary bacteria. Thus, as has been postulated, metabolite production in proximity to taste receptors could reach relatively high concentrations. In the presence of 0.25 M exogenous sucrose, increased catabolism was observed with increased concentrations of a range of metabolites relating to glycolysis (lactate, pyruvate, succinate). Additional pyruvate-derived molecules such as acetoin and alanine were also increased. Furthermore, there was evidence that individual taste sensitivity to sucrose was related to differences in the metabolic fate of sucrose in the mouth. High-sensitivity perceivers appeared more inclined toward continual citric acid cycle activity postsucrose, whereas low-sensitivity perceivers had a more efficient conversion of pyruvate to lactate. This work collectively indicates that the oral microbiome exists in a complex balance with the host, with fluctuating metabolic activity depending on nutrient availability. There is preliminary evidence of an association between host behavior (sweet taste perception) and oral catabolism of sugar.</p
    • …
    corecore