8 research outputs found
Influence of Diporeia Density on Diet Composition, Relative Abundance, and Energy Density of Planktivorous Fishes in Southeast Lake Michigan
The benthic amphipod Diporeia spp. is an important prey for many fish in offshore areas of the Great Lakes, but its abundance has been rapidly decreasing. To assess the influence of Diporeia availability on the food habits, relative abundance, and energetics of planktivorous fish, the diet composition, catch per unit effort (CPUE), and energy density of plantkivorous fish in southeast Lake Michigan during 2000â2001 were compared among locations with different Diporeia densities. Diporeia densities at St. Joseph, Michigan, were near 0/m2 over much of the bottom but averaged more than 3,800/m2 at Muskegon and Little Sable Point, Michigan. Consistent with these differences in Diporeia density, fish diet composition, CPUE, and energy density varied spatially. For example, alternative prey types comprised a larger fraction of the diets of bloater Coregonus hoyi, large (>100 mm total length) alewife Alosa pseudoharengus, and slimy sculpin Cottus cognatus at St. Joseph than at Muskegon and Little Sable Point. This pattern was seasonally dependent for alewives and bloaters because Diporeia were eaten mainly in June. Food biomass per stomach was not lower at St. Joseph than elsewhere, suggesting that the spatial variation in diet composition was due to greater consumption of alternative prey by fish at St. Joseph. Although slimy sculpin and bloaters were able to feed on alternative prey, the CPUE of these species at certain depths was considerably lower at St. Joseph than at Muskegon or Little Sable Point, indicating that Diporeia availability may also influence fish abundance and distribution. Finally, a link between Diporeia density and fish energetics was suggested by the comparatively low energy density of deepwater sculpin Myoxocephalus thompsonii and large alewives at St. Joseph, a result that may reflect the low energy content of other prey relative to Diporeia.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141042/1/tafs0588.pd
The importance of excretion by Chironomus larvae on the internal loads of nitrogen and phosphorus in a small eutrophic urban reservoir
Measurements of ammonium and phosphate excretion by the Chironomus larvae were conducted in order to evaluate the importance of these chironomids for the internal loads of a small eutrophic urban reservoir. Ammonium and phosphate excretion rates by Chironomus larvae of small size (6-10 mm total length) were significantly higher than those of the Chironomids having medium (9-11 mm) and large (11-16 mm) sizes. A dependence in relation to temperature was recorded for the ammonium and phosphate excretions that was significantly higher at 25 °C than at 20 and 15 °C. Through a linear relation between biomass (dry weight) and total length and, between excretion and biomass and, data on chironomids densities, after an intense sampling in 33 sites distributed all along the reservoir bottom, the mean phosphate and ammonium excretion rates corresponded to 2,014 ± 5,134 ”g.m-2/day and 1,643 ± 3,974 ”g.m-2/day, respectively. Considering the mean biomass (34 mg.m-2) of Chironomus, the lake area (88,156 mÂČ) and the mean excretion rates, the contribution of benthic chironomids to the internal loads would be 181 KgP and 147 KgN. for the sampling months (October-November 1998). These values showed that the internal loads by excretion from Chironomus larvae correspond to approximately 33% of the external loads of phosphorus in the lake and, in the case of nitrogen, to only 5%