144 research outputs found

    Effects of Starter Cultures and Type of Casings on the Microbial Features and Volatile Profile of Fermented Sausages

    Get PDF
    In the literature, the effect of the type of casing on fermented sausages is quite unexplored, while several studies are focused on the impact of starter cultures. Therefore, this paper studied the effect of three commercial starter cultures and two casings (natural or collagen) on Italian fermented sausages. Physico-chemical parameters (aw, pH, weight loss), microbiota, aroma profile and sensory analysis were evaluated. Results showed that collagen casings promoted a higher reduction of pH and weight loss. Concerning the microbiota, samples with natural casing had higher counts of lactic acid bacteria, while yeast proliferation was promoted in those with collagen. Regardless of the starters and casings applied, levels of enterococci and Enterobacteriaceae were low (≤2 log CFU/g). The aroma profile was significantly affected by casing: despite the starter applied, the presence of collagen casing favoured acid accumulation (mainly acetate and butanoate) and reduction of ketones. Sensory analysis highlighted significant differences only for odour, colour intensity and sourness. The differences observed suggest that collagen casings may provide a greater availability of oxygen. Overall, casings rather than starter cultures impact the microbial and sensorial features of fermented sausages

    BRCA in Gastrointestinal Cancers: Current Treatments and Future Perspectives

    Get PDF
    : A strong association between pancreatic cancer and BRCA1 and BRCA2 mutations is documented. Based on promising results of breast and ovarian cancers, several clinical trials with poly (ADP-ribose) polymerase inhibitors (PARPi) are ongoing for gastrointestinal (GI) malignancies, especially for pancreatic cancer. Indeed, the POLO trial results provide promising and awaited changes for the pancreatic cancer therapeutic landscape. Contrariwise, for other gastrointestinal tumors, the rationale is currently only alleged. The role of BRCA mutation in gastrointestinal cancers is the subject of this review. In particular, we aim to provide the latest updates about novel therapeutic strategies that, exploiting DNA repair defects, promise to shape the future therapeutic scenario of GI cancers

    Numerical models of mass transfer during ripening and storage of salami

    Get PDF
    Ripening, in the dry sausages manufacturing process, has an influence over the main physical, chemical and microbiological transformations that take place inside these products and that define the final organoleptic properties of dry sausages. A number of study about the influence of ripening conditions on the main chemical and microbiological characteristics of dry sausages is available today. All these studies indicate that the final quality and safety standards achieved by the sausage manufacturing process can be considered to be strictly dependent from the specific ripening conditions. The water diffusion inside a seasoned sausage is surely an aspect of primary importance with regard to the quality of final product. As a consequence the aim of this research was to develop two parametric numerical models, concerning the moisture diffusion physics, describing salami ripening and storage. Mass transfer equations inside the sausage volume were numerically solved using a finite element technique. A first model describes diffusion phenomena occurring inside the salami and the exchange phenomena involving the surface of the product and the environment. After the ripening, the salami are stored in waterproof packaging, consequently an additional model able to describe also the evaporation and condensation phenomena occurring between the salami surface and the air in the package, was developed. The moisture equilibrium between salami surface and conservation atmosphere is mainly ruled by the temperature changes during storage. Both models allow to analyze the history of the moisture content inside the salami and are parametrised on product size and maturation/storage conditions. The models were experimentally validated, comparing the numerical outputs of the simulations with experimental data, showing a good agreement

    Set-up of a multivariate approach based on serum biomarkers as an alternative strategy for the screening evaluation of the potential abuse of growth promoters in veal calves

    Get PDF
    A chemometric class modelling strategy (unequal dispersed classes – UNEQ) was applied for the first time as a possible screening method to monitor the abuse of growth promoters in veal calves. Five serum biomarkers, known to reflect the exposure to classes of compounds illegally used as growth promoters, were determined from 50 untreated animals in order to design a model of controls, representing veal calves reared under good, safe and highly standardised breeding conditions. The class modelling was applied to 421 commercially bred veal calves to separate them into ‘compliant’ and ‘non-compliant’ with respect to the modelled controls. Part of the non-compliant animals underwent further histological and chemical examinations to confirm the presence of either alterations in target tissues or traces of illegal substances commonly administered for growth-promoting purposes. Overall, the congruence between the histological or chemical methods and the UNEQ non-compliant outcomes was approximately 58%, likely underestimated due to the blindness nature of this examination. Further research is needed to confirm the validity of the UNEQ model in terms of sensitivity in recognising untreated animals as compliant to the controls, and specificity in revealing deviations from ideal breeding conditions, for example due to the abuse of growth promoters

    Management of adverse events with tailored sorafenib dosing prolongs survival of hepatocellular carcinoma patients

    Get PDF
    Sorafenib is associated with multiple adverse events (AEs), potentially causing its permanent interruption. The impact of the physicians experience on the management of these AEs and the relative implications on clinical outcomes are unknown. We verified if the AEs management changed over time and if these modifications impacted on treatment duration and overall survival (OS)

    Listeria monocytogenes sensitivity to antimicrobial treatments depends on cell origin

    Get PDF
    In this study we investigated how cell origin could affect the efficacy of an antimicrobial treatment (mild heating combined with terpenoids) in Listeria monocytogenes Scott A, considering cells from: 1. single colony, 2. glycerol stock, 3. cold adapted culture, and 4. fresh culture in stationary phase. After treatment, culturability on BHI medium and viability assessed by flow cytometry were evaluated. Our results showed that the cell origin significantly impacted viability and culturability of L. monocytogenes towards antimicrobial treatment. The mild heat treatment combined or not with terpenoids mainly affected culturability rather than viability, although the culturability of cells from single colony was less impacted. Therefore, to mimic the worst scenario, these latter were selected to contaminate Gorgonzola rind and roast beef slices and we evaluated the ability of L. monocytogenes cells to recover their culturability (on ALOA agar medium) and to growth on the food matrix stored at 4 °C for 7 days. Our results suggest that only Gorgonzola rind allowed a partial recovery of the culturability of cells previously heated in presence or not of terpens. In conclusion, we found a connection between the cell history and sensitivity toward an antimicrobial treatment, underlying the importance to standardize the experimental procedures (starting from the cells to be used in the assay) in the assessment of cell sensitivity to a specific treatment. Finally, our study clearly indicated that VBNC cells can resuscitate under favorable conditions on a food matrix, becoming a threat for consumer’s health

    Insights into the Metabolomic Diversity of Latilactobacillus sakei

    Get PDF
    : Latilactobacillus sakei (L. sakei), widely used as a starter culture in fermented sausages, is a species adapted to meat environments. Its ability to survive for a long time in such products is due to the exploitation of different metabolic pathways to gain energy (hexose and pentose sugar fermentation, amino acids catabolism, etc.). Since L. sakei demonstrates high phenotypic and metabolic strain biodiversity, in this work, a metabolomic approach was used to compare five strains of different origins. They were cultivated in a defined medium with glucose or ribose at two concentrations, and analyzed through nuclear magnetic resonance (1H-NMR) spectroscopy to monitor amino acid consumptions and accumulation of organic acids and aroma compounds. The results showed that all the strains were able to use arginine, especially when cultivated with ribose, while serine was consumed mainly in the presence of glucose. Aroma compounds (i.e., diacetyl and acetoin) were mainly accumulated in samples with ribose. These aspects are relevant for starter cultures selection, to confer specific features to fermented sausages, and to optimize the fermentations. Moreover, the use of 1H-NMR allowed the fast identification of different classes of compounds (without derivatization or extraction procedures), providing a powerful tool to increase the knowledge of the metabolic diversity of L. sakei

    Survival, growth, and biogenic amine production of Enterococcus faecium FC12 in response to extracts and essential oils of Rubus fruticosus and Juniperus oxycedrus

    Get PDF
    Enterococci are lactic acid bacteria (LAB) usually found as food contaminants in fermented products such as cheeses and fermented sausages. Due to their antibiotic resistance, the presence of virulence factors, and the ability to produce biogenic amines (BAs), the determination of these bacteria is crucial to assure food quality and safety. BAs production and consequent accumulation in foods can cause toxicological eects on human health. Plant phenolic compounds are promising alternatives to chemical preservatives and reflect consumers’ demand for “green” solutions. In this study, the antimicrobial eect of blackberry (Rubus fruticosus) leaves and prickly juniper (Juniperus oxycedrus) needles, both as phenolic extracts (PE) and essential oils (EO), were evaluated against Enterococcus faecium FC12, a known tyramine-producing strai

    Use of two autochthonous bacteriocinogenic strains as starter cultures in the production of salchichónes, a type of Spanish fermented sausages

    Get PDF
    In this work, two autochthonous LAB strains (Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6), isolated from spontaneously fermented sausages produced in Spain, were tested to produce Spanish fermented sausages (salchichón) in pilot plants, due to their promising technological and anti-listerial activity. These products were compared with a sample obtained with a commercial starter (RAP) and a spontaneously fermented control sample. Physico-chemical parameters, microbial counts, metagenomic analysis, biogenic amines content and organoleptic profile of the obtained samples were studied to assess the performances of the native starters. In fact, traditional and artisanal products obtained through spontaneous fermentations can represent an important biodiversity reservoir of strains to be exploited as new potential starter cultures, to improve the safety, quality and local differentiation of traditional products. The data underlined that ST6 strain resulted in a final lower percentage if compared with the other LAB used as starter cultures. The use of starters reduced the BA concentration observed in the sausages obtained with spontaneous fermentation and the BPF2 and ST6 strains were able to decrease the level of products rancidity. Moreover, a challenge test against L. monocytogenes were performed. The data confirmed the effectiveness in the inhibition of L. monocytogenes by the two bacteriocinogenic strains tested, with respect to RAP and control samples, highlighting their ability to produce bacteriocins in real food systems. This work demonstrated the promising application in meat industry of these autochthonous strains as starter cultures to improve sensory differentiation and recognizability of typical fermented sausages
    corecore