173 research outputs found
Developing a business case for greening hard coastal and estuarine infrastructure: preliminary results
This paper presents a new framework of critical success factors (CSF) that is being developed to aid approval of ecological enhancements and green engineering options in cities, historic conservation areas, estuaries and at the coast. This is intended to support asset managers, engineers, conservation and biodiversity teams, decision-makers, and other end-users. The CSF framework is outlined and demonstrated by assessing the engineering performance and ecosystem services benefits of ecological enhancements used in specific operational scale case studies. Where data availability permits, the costs and benefits of different greening approaches compared to ‘business as usual’ are assessed. Three coastal and estuarine case studies are presented to demonstrate how the framework can be applied to compare traditional engineering solutions to green-grey options. Results show that simple, inexpensive ecological enhancement and green engineering solutions can deliver more multifunctional benefits than business as usual solutions for similar or reduced costs. They also demonstrate that the CSF framework will be a powerful tool that can aid practitioners in evaluating green engineering solutions compared with business as usual
Lipid metabolism, carcass characteristics and Longissimus dorsi muscle fatty acid composition of tropical crossbred beef cattle in response to Desmanthus spp. forage backgrounding
Lipid metabolism, carcass characteristics and fatty acid (FA) composition of the Longissimus dorsi (loin eye) muscle were evaluated in tropical crossbred steers backgrounded on Desmanthus spp. (desmanthus) with or without feedlot finishing. It was hypothesized that steers backgrounded on isonitrogenous diets augmented with incremental proportions of desmanthus will produce carcasses with similar characteristics and FA composition. Forty-eight Brahman, Charbray and Droughtmaster crossbred beef steers were backgrounded for 140 days on Rhodes grass (Chloris gayana) hay augmented with 0, 15, 30 or 45 percent desmanthus on dry matter basis. Lucerne (Medicago sativa) hay was added to the 0, 15 and 30 percent desmanthus diets to ensure that they were isonitrogenous with the 45 percent desmanthus diet. After backgrounding, the two heaviest steers in each pen were slaughtered and the rest were finished in the feedlot for 95 days before slaughter. Muscle biopsy samples were taken at the beginning and end of the backgrounding phase. Carcasses were sampled at slaughter for intramuscular fat (IMF) content, fat melting point (FMP) and FA composition analyses. Increasing the proportion of desmanthus in the diet led to a linear increase in docosanoic acid (p = 0.04) and omega-6/omega-3 polyunsaturated FA ratio (n-6/n-3 PUFA; p = 0.01), while docosahexaenoic acid decreased linearly (p = 0.01). Feedlot finishing increased hot carcass weight, subcutaneous fat depth at the P8 site and dressing percentage (p ≤ 0.04). The n-6/n-3 PUFA ratio was within the recommended < 5 for human diets. IMF was within the consumer-preferred ≥ 3% level for palatability. The hypothesis that steers backgrounded on isonitrogenous diets augmented with incremental proportions of desmanthus will produce similar carcass characteristics and FA composition was accepted. These findings indicate that a combination of tropical beef cattle backgrounding on desmanthus augmented forage and short-term feedlot finishing produces healthy and highly palatable meat
Modelling of Optical Detection of Spin-Polarized Carrier Injection into Light-Emitting Devices
We investigate the emission of multimodal polarized light from Light Emitting
Devices due to spin-aligned carriers injection. The results are derived through
operator Langevin equations, which include thermal and carrier-injection
fluctuations, as well as non-radiative recombination and electronic g-factor
temperature dependence. We study the dynamics of the optoelectronic processes
and show how the temperature-dependent g-factor and magnetic field affect the
polarization degree of the emitted light. In addition, at high temperatures,
thermal fluctuation reduces the efficiency of the optoelectronic detection
method for measuring spin-polarization degree of carrier injection into
non-magnetic semicondutors.Comment: 15 pages, 7 figures, replaced by revised version. To appear in Phys.
Rev.
Breakdown of correspondence in chaotic systems: Ehrenfest versus localization times
Breakdown of quantum-classical correspondence is studied on an experimentally
realizable example of one-dimensional periodically driven system. Two relevant
time scales are identified in this system: the short Ehrenfest time t_h and the
typically much longer localization time scale T_L. It is shown that
surprisingly weak modification of the Hamiltonian may eliminate the more
dramatic symptoms of localization without effecting the more subtle but
ubiquitous and rapid loss of correspondence at t_h.Comment: 4 pages, 5 figures, replaced with a version submitted to PR
Quantum jumps induced by the center-of-mass motion of a trapped atom
We theoretically study the occurrence of quantum jumps in the resonance
fluorescence of a trapped atom. Here, the atom is laser cooled in a
configuration of level such that the occurrence of a quantum jump is associated
to a change of the vibrational center-of-mass motion by one phonon. The
statistics of the occurrence of the dark fluorescence period is studied as a
function of the physical parameters and the corresponding features in the
spectrum of resonance fluorescence are identified. We discuss the information
which can be extracted on the atomic motion from the observation of a quantum
jump in the considered setup
Chaos in a double driven dissipative nonlinear oscillator
We propose an anharmonic oscillator driven by two periodic forces of
different frequencies as a new time-dependent model for investigating quantum
dissipative chaos. Our analysis is done in the frame of statistical ensemble of
quantum trajectories in quantum state diffusion approach. Quantum dynamical
manifestation of chaotic behavior, including the emergence of chaos, properties
of strange attractors, and quantum entanglement are studied by numerical
simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure
Soft Dynamics simulation: 2. Elastic spheres undergoing a T1 process in a viscous fluid
Robust empirical constitutive laws for granular materials in air or in a
viscous fluid have been expressed in terms of timescales based on the dynamics
of a single particle. However, some behaviours such as viscosity bifurcation or
shear localization, observed also in foams, emulsions, and block copolymer
cubic phases, seem to involve other micro-timescales which may be related to
the dynamics of local particle reorganizations. In the present work, we
consider a T1 process as an example of a rearrangement. Using the Soft dynamics
simulation method introduced in the first paper of this series, we describe
theoretically and numerically the motion of four elastic spheres in a viscous
fluid. Hydrodynamic interactions are described at the level of lubrication
(Poiseuille squeezing and Couette shear flow) and the elastic deflection of the
particle surface is modeled as Hertzian. The duration of the simulated T1
process can vary substantially as a consequence of minute changes in the
initial separations, consistently with predictions. For the first time, a
collective behaviour is thus found to depend on another parameter than the
typical volume fraction in particles.Comment: 11 pages - 5 figure
- …