7,353 research outputs found
Recommended from our members
Examining consent for interventional research in potential deceased organ donors: a narrative review
In the last decade, research in transplant medicine has focused on developing interventions in the management of the deceased organ donor to improve the quality and quantity of transplantable organs. Despite the promise of interventional donor research, there remain debates about the ethics of this research, specifically regarding gaining research consent. Here, we examine the concerns and ambiguities around consent for interventional donor research, which incorporate questions about who should consent for interventional donor research and what people are being asked to consent for. We highlight the US and UK policy responses to these concerns and argue that, whereas guidance in this area has done much to clarify these ambiguities, there is little consideration of the nature, practicalities and context around consent in this area, particularly regarding organ donors and their families. We review wider studies of consent in critical care research and social science studies of consent in medical research, to gain a broader view of consent in this area as a relational and contextual process. We contend a lack of consideration has been given to: what it might mean to consent to interventional donor research; how families, patients and health professionals might experience providing and seeking this consent; who is best placed to have these discussions; and the socio‐institutional contexts affecting these processes. Further, empirical research is required to establish an ethical and sensitive model for consent in interventional donor research, ensuring the principles enshrined in research ethics are met and public trust in organ donation is maintained
Number-Phase Wigner Representation for Efficient Stochastic Simulations
Phase-space representations based on coherent states (P, Q, Wigner) have been
successful in the creation of stochastic differential equations (SDEs) for the
efficient stochastic simulation of high dimensional quantum systems. However
many problems using these techniques remain intractable over long integrations
times. We present a number-phase Wigner representation that can be unraveled
into SDEs. We demonstrate convergence to the correct solution for an anharmonic
oscillator with small dampening for significantly longer than other phase space
representations. This process requires an effective sampling of a non-classical
probability distribution. We describe and demonstrate a method of achieving
this sampling using stochastic weights.Comment: 7 pages, 1 figur
Quantum turbulence in condensate collisions: an application of the classical field method
We apply the classical field method to simulate the production of correlated
atoms during the collision of two Bose-Einstein condensates. Our
non-perturbative method includes the effect of quantum noise, and provides for
the first time a theoretical description of collisions of high density
condensates with very large out-scattered fractions. Quantum correlation
functions for the scattered atoms are calculated from a single simulation, and
show that the correlation between pairs of atoms of opposite momentum is rather
small. We also predict the existence of quantum turbulence in the field of the
scattered atoms--a property which should be straightforwardly measurable.Comment: 5 pages, 3 figures: Rewritten text, replaced figure
Quantum Kinetic Theory VI: The Growth of a Bose-Einstein Condensate
A detailed analysis of the growth of a BEC is given, based on quantum kinetic
theory, in which we take account of the evolution of the occupations of lower
trap levels, and of the full Bose-Einstein formula for the occupations of
higher trap levels, as well as the Bose stimulated direct transfer of atoms to
the condensate level introduced by Gardiner et al. We find good agreement with
experiment at higher temperatures, but at lower temperatures the experimentally
observed growth rate is somewhat more rapid. We also confirm the picture of the
``kinetic'' region of evolution, introduced by Kagan et al., for the time up to
the initiation of the condensate. The behavior after initiation essentially
follows our original growth equation, but with a substantially increased rate
coefficient.
Our modelling of growth implicitly gives a model of the spatial shape of the
condensate vapor system as the condensate grows, and thus provides an
alternative to the present phenomenological fitting procedure, based on the sum
of a zero-chemical potential vapor and a Thomas-Fermi shaped condensate. Our
method may give substantially different results for condensate numbers and
temperatures obtained from phenomentological fits, and indicates the need for
more systematic investigation of the growth dynamics of the condensate from a
supersaturated vapor.Comment: TeX source; 29 Pages including 26 PostScript figure
Disruption of reflecting Bose-Einstein condensates due to inter-atomic interactions and quantum noise
We perform fully three-dimensional simulations, using the truncated Wigner
method, to investigate the reflection of Bose-Einstein condensates from abrupt
potential barriers. We show that the inter-atomic interactions can disrupt the
internal structure of a cigar-shaped cloud with a high atom density at low
approach velocities, damping the center-of-mass motion and generating vortices.
Furthermore, by incorporating quantum noise we show that scattering halos form
at high approach velocities, causing an associated condensate depletion. We
compare our results to recent experimental observations.Comment: 5 figure
Trapping and Cooling a mirror to its quantum mechanical ground state
We propose a technique aimed at cooling a harmonically oscillating mirror to
its quantum mechanical ground state starting from room temperature. Our method,
which involves the two-sided irradiation of the vibrating mirror inside an
optical cavity, combines several advantages over the two-mirror arrangements
being used currently. For comparable parameters the three-mirror configuration
provides a stiffer trap for the oscillating mirror. Furthermore it prevents
bistability from limiting the use of higher laser powers for mirror trapping,
and also partially does so for mirror cooling. Lastly, it improves the
isolation of the mirror from classical noise so that its dynamics are perturbed
mostly by the vacuum fluctuations of the optical fields. These improvements are
expected to bring the task of achieving ground state occupation for the mirror
closer to completion.Comment: 5 pages, 1 figur
Isolating intrinsic noise sources in a stochastic genetic switch
The stochastic mutual repressor model is analysed using perturbation methods. This simple model of a gene circuit consists of two genes and three promotor states. Either of the two protein products can dimerize, forming a repressor molecule that binds to the promotor of the other gene. When the repressor is bound to a promotor, the corresponding gene is not transcribed and no protein is produced. Either one of the promotors can be repressed at any given time or both can be unrepressed, leaving three possible promotor states. This model is analysed in its bistable regime in which the deterministic limit exhibits two stable fixed points and an unstable saddle, and the case of small noise is considered. On small time scales, the stochastic process fluctuates near one of the stable fixed points, and on large time scales, a metastable transition can occur, where fluctuations drive the system past the unstable saddle to the other stable fixed point. To explore how different intrinsic noise sources affect these transitions, fluctuations in protein production and degradation are eliminated, leaving fluctuations in the promotor state as the only source of noise in the system. Perturbation methods are then used to compute the stability landscape and the distribution of transition times, or first exit time density. To understand how protein noise affects the system, small magnitude fluctuations are added back into the process, and the stability landscape is compared to that of the process without protein noise. It is found that significant differences in the random process emerge in the presence of protein noise
Solitary-wave description of condensate micro-motion in a time-averaged orbiting potential trap
We present a detailed theoretical analysis of micro-motion in a time-averaged
orbiting potential trap. Our treatment is based on the Gross-Pitaevskii
equation, with the full time dependent behaviour of the trap systematically
approximated to reduce the trapping potential to its dominant terms. We show
that within some well specified approximations, the dynamic trap has
solitary-wave solutions, and we identify a moving frame of reference which
provides the most natural description of the system. In that frame eigenstates
of the time-averaged orbiting potential trap can be found, all of which must be
solitary-wave solutions with identical, circular centre of mass motion in the
lab frame. The validity regime for our treatment is carefully defined, and is
shown to be satisfied by existing experimental systems.Comment: 12 pages, 2 figure
The Morphologies of the Small Magellanic Cloud
We compare the distribution of stars of different spectral types, and hence
mean age, within the central SMC and find that the asymmetric structures are
almost exclusively composed of young main sequence stars. Because of the
relative lack of older stars in these features, and the extremely regular
distribution of red giant and clump stars in the SMC central body, we conclude
that tides alone are not responsible for the irregular appearance of the
central SMC. The dominant physical mechanism in determining the current-day
appearance of the SMC must be star formation triggered by a hydrodynamic
interaction between gaseous components. These results extend the results of
population studies (cf. Gardiner and Hatzidimitriou) inward in radius and also
confirm the suggestion of the spheroidal nature of the central SMC based on
kinematic arguments (Dopita et al; Hardy, Suntzeff & Azzopardi). Finally, we
find no evidence in the underlying older stellar population for a ``bar'' or
``outer arm'', again supporting our classification of the central SMC as a
spheroidal body with highly irregular recent star formation.Comment: 8 pages, accepted for publication in ApJ Letters (higher quality
figures available at http://ngala.as.arizona.edu/dennis/mcsurvey.html
- …