9 research outputs found

    18F-FDG metabolism in a rat model of chronic infarction: a 17-sector semiquantitative analysis

    Get PDF
    Strategies to establish the functional benefit of cell therapy in cardiac regeneration and the potential mechanism are needed. Aims: Development of a semi-quantitative method for non invasive assessment of cardiac viability and function in a rat model of myocardial infarction (MI) based on the use of microPET. Animals, methods: Ten rats were subjected to myocardial imaging 2, 7, 14, 30, 60 and 90 days after left coronary artery ligation. Intravenous 18F-fluoro-2-deoxy-2-D-glucose (18F-FDG) was administered and regional 18F activity concentrations per unit area were measured in 17 regions of interest (ROIs) drawn on cardiac polar maps. By comparing the differences in 18F uptake between baseline and each of the follow up time points, parametric polar maps of statistical significance (PPMSS) were calculated. Left ventricular ejection fraction (LVEF) was blindly assessed echocardiographically. All animals were sacrificed for histopathological analysis after 90 days. Results: The diagnostic quality of 18F-FDG microPET images was excellent. PPMSS demonstrated a statistically significant decrease in 18F concentrations as early as 48 hours after MI in 4 of the 17 ROIs (segments 7, 13, 16 and 17; p <0.05) that persisted throughout the study. Semi-quantitative analysis of 18F-FDG uptake correlated with echocardiographic decrease in LVEF (p <0.001). Conclusion: The use of PPMSS based on 18F-FDG-microPET provides valuable semi-quantitative information of heart glucose metabolism allowing for non-invasive follow up thus representing a useful strategy for assessment of novel therapies in cardiac regeneration

    Preclinical activity of LBH589 alone or in combination with chemotherapy in a xenogeneic mouse model of human acute lymphoblastic leukemia.

    Get PDF
    Histone deacetylases (HDACs) have been identified as therapeutic targets due to their regulatory function in chromatin structure and organization. Here, we analyzed the therapeutic effect of LBH589, a class I-II HDAC inhibitor, in acute lymphoblastic leukemia (ALL). In vitro, LBH589 induced dose-dependent antiproliferative and apoptotic effects, which were associated with increased H3 and H4 histone acetylation. Intravenous administration of LBH589 in immunodeficient BALB/c-RAG2(-/-)Îłc(-/-) mice in which human-derived T and B-ALL cell lines were injected induced a significant reduction in tumor growth. Using primary ALL cells, a xenograft model of human leukemia in BALB/c-RAG2(-/-)Îłc(-/-) mice was established, allowing continuous passages of transplanted cells to several mouse generations. Treatment of mice engrafted with T or B-ALL cells with LBH589 induced an in vivo increase in the acetylation of H3 and H4, which was accompanied with prolonged survival of LBH589-treated mice in comparison with those receiving vincristine and dexamethasone. Notably, the therapeutic efficacy of LBH589 was significantly enhanced in combination with vincristine and dexamethasone. Our results show the therapeutic activity of LBH589 in combination with standard chemotherapy in pre-clinical models of ALL and suggest that this combination may be of clinical value in the treatment of patients with ALL

    Gantrez AN nanoparticles for ocular delivery of memantine: in vitro release evaluation in albino rabbits

    No full text
    AIM: To prepare and evaluate the in vitro release of memantine-loaded poly(anhydride) (GantrezŸ) nanoparticles (NPs). The clinical safety and retinal toxicity caused by unloaded NPs after sub-Tenon and intravitreal ocular injections were also evaluated. METHODS: Preparation and characterization of this type of NP as well as the in vitro release study are described. Twenty-three healthy New Zealand rabbits were used for clinical and histological assessment after sub-Tenon and intravitreal ocular injections of unloaded NPs. RESULTS: The amount of drug associated with NPs was 55 ”g of memantine/mg of NP. The release profile of memantine from this type of NPs was characterized by an initial burst effect, followed by continuous release of the drug for at least 15 days. No relevant complications were found during the clinical follow-up. The histological evaluation suggested that Gantrez NPs are well tolerated after sub-Tenon ocular injection and that signs of inflammation during the first days after intravitreal ocular injections can be considered a normal reaction of the eye's defence mechanism

    Gantrez AN nanoparticles for ocular delivery of memantine: in vitro release evaluation in albino rabbits

    No full text
    AIM: To prepare and evaluate the in vitro release of memantine-loaded poly(anhydride) (GantrezŸ) nanoparticles (NPs). The clinical safety and retinal toxicity caused by unloaded NPs after sub-Tenon and intravitreal ocular injections were also evaluated. METHODS: Preparation and characterization of this type of NP as well as the in vitro release study are described. Twenty-three healthy New Zealand rabbits were used for clinical and histological assessment after sub-Tenon and intravitreal ocular injections of unloaded NPs. RESULTS: The amount of drug associated with NPs was 55 ”g of memantine/mg of NP. The release profile of memantine from this type of NPs was characterized by an initial burst effect, followed by continuous release of the drug for at least 15 days. No relevant complications were found during the clinical follow-up. The histological evaluation suggested that Gantrez NPs are well tolerated after sub-Tenon ocular injection and that signs of inflammation during the first days after intravitreal ocular injections can be considered a normal reaction of the eye's defence mechanism

    18F-FDG metabolism in a rat model of chronic infarction: a 17-sector semiquantitative analysis

    No full text
    Strategies to establish the functional benefit of cell therapy in cardiac regeneration and the potential mechanism are needed. Aims: Development of a semi-quantitative method for non invasive assessment of cardiac viability and function in a rat model of myocardial infarction (MI) based on the use of microPET. Animals, methods: Ten rats were subjected to myocardial imaging 2, 7, 14, 30, 60 and 90 days after left coronary artery ligation. Intravenous 18F-fluoro-2-deoxy-2-D-glucose (18F-FDG) was administered and regional 18F activity concentrations per unit area were measured in 17 regions of interest (ROIs) drawn on cardiac polar maps. By comparing the differences in 18F uptake between baseline and each of the follow up time points, parametric polar maps of statistical significance (PPMSS) were calculated. Left ventricular ejection fraction (LVEF) was blindly assessed echocardiographically. All animals were sacrificed for histopathological analysis after 90 days. Results: The diagnostic quality of 18F-FDG microPET images was excellent. PPMSS demonstrated a statistically significant decrease in 18F concentrations as early as 48 hours after MI in 4 of the 17 ROIs (segments 7, 13, 16 and 17; p <0.05) that persisted throughout the study. Semi-quantitative analysis of 18F-FDG uptake correlated with echocardiographic decrease in LVEF (p <0.001). Conclusion: The use of PPMSS based on 18F-FDG-microPET provides valuable semi-quantitative information of heart glucose metabolism allowing for non-invasive follow up thus representing a useful strategy for assessment of novel therapies in cardiac regeneration

    Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction

    No full text
    Although transplantation of skeletal myoblast (SkM) in models of chronic myocardial infarction (MI) induces an improvement in cardiac function, the limited engraftment remains a major limitation. We analyse in a pre-clinical model whether the sequential transplantation of autologous SkM by percutaneous delivery was associated with increased cell engraftment and functional benefit

    Repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction

    No full text
    Although transplantation of skeletal myoblast (SkM) in models of chronic myocardial infarction (MI) induces an improvement in cardiac function, the limited engraftment remains a major limitation. We analyse in a pre-clinical model whether the sequential transplantation of autologous SkM by percutaneous delivery was associated with increased cell engraftment and functional benefit
    corecore