2,309 research outputs found

    Monitoring the Function of the P-glycoprotein Transporter at the Blood Brain Barrier

    Get PDF
    The P-glycoprotein (P-gp) transporter located at the blood-brain barrier (BBB) is an efflux transporter that pumps neurotoxic compounds out of the brain. Its main function is to protect the brain to ensure an appropriate neural function. Decreases in the P-gp function can result in increased accumulation of toxic compounds inside the brain such as beta-amyloid and this may cause the development of Alzheimer´s or other neurological disorders. By contrast, increases in the P-gp function can decrease the therapeutic drug concentration inside the brain and influence the efficacy of the treatment (drug resistance) as occurred in patients with intractable epilepsy. Thus, it is of interest to monitor the P-gp function in vivo to facilitate the early diagnosis of brain disorders and to monitor drug resistance. To this aim, we used Positron Emission Tomography (PET) imaging, a non-invasive technique that allows the quantification of biological processes in vivo, and the novel radiotracer [18F]MC225 which measures the P-gp function. The aim was to study the kinetic properties of the radiotracer in different species and prove its efficacy to measure increases and decrease in the P-gp function before its clinical evaluation. We conclude that the obtained results have broadened the knowledge of the P-gp function at the BBB. Moreover, the results highlight that [18F]MC225 may become the first radiofluorinated P-gp PET tracer able to measure both decreases and increases in the P-gp function in vivo. The radiolabeling with fluorine-18 would allow its distribution to other PET centers and improve the image quality

    Dose-response assessment of cerebral P-glycoprotein inhibition in vivo with [ 18 F]MC225 and PET

    Get PDF
    The Blood-Brain Barrier P-glycoprotein (P-gp) function can be altered in several neurodegenerative diseases and due to the administration of different drugs which may cause alterations in drug concentrations and consequently lead to a reduced effectiveness or increased side-effects. The novel PET radiotracer [18F]MC225 is a weak P-gp substrate that may show higher sensitivity to detect small changes in P-gp function than previously developed radiotracers. This study explores the sensitivity of [18F]MC225 to measure the dose-dependent effect of P-gp inhibitor tariquidar. Twenty-three rats were intravenously injected with different doses of tariquidar ranging from 0.75 to 12 mg/kg, 30-min before the dynamic [18F]MC225-PET acquisition with arterial sampling. Tissue and blood data were fitted to a 1-Tissue-Compartment-Model to obtain influx constant K1 and distribution volume VT, which allow the estimation of P-gp function. ANOVA and post-hoc analyses of K1 values showed significant differences between controls and groups with tariquidar doses >3 mg/kg; while applying VT the analyses showed significant differences between controls and groups with tariquidar doses >6 mg/kg. Dose-response curves were fitted using different models. The four-parameter logistic sigmoidal curve provided the best fit for K1 and VT data. Half-maximal inhibitory doses (ID50) were 2.23 mg/kg (95%CI: 1.669-2.783) and 2.93 mg/kg (95%CI: 1.135-3.651), calculated with K1 or VT values respectively. According to the dose-response fit, differences in [18F]MC225-K1 values could be detected at tariquidar doses ranging from 1.37 to 3.25 mg/kg. Our findings showed that small changes in the P-gp function, caused by low doses of tariquidar, could be detected by [18F]MC225-K1 values, which confirms the high sensitivity of the radiotracer. The results suggest that [18F]MC225 may allow the quantification of moderate P-gp impairments, which may allow the detection of P-gp dysfunctions at the early stages of a disease and potential transporter-mediated drug-drug interactions

    Test-retest repeatability of [18F]MC225-PET in rodents:A tracer for imaging of P-gp function

    Get PDF
    In longitudinal PET studies, animals are repeatedly anesthetized which may affect the repeatability of PET measurements. The aim of this study was to assess the effect of anesthesia on the P-gp function as well as the reproducibility of [18F]MC225 PET scans. Thus, dynamic PET scans with blood sampling were conducted in 13 Wistar rats. Seven animals were exposed to isoflurane anesthesia 1 week before the PET scan ("Anesthesia-exposed" PET). A second group of six animals was used to evaluate the reproducibility of measurements of P-gp function at the blood-brain barrier (BBB) with [18F]MC225. In this group, two PET scans were made with a 1 week interval ("Test" and "Retest" PET). Pharmacokinetic parameters were calculated using compartmental models and metabolite-corrected plasma as an input function. "Anesthesia-exposed" animals showed a 28% decrease in whole-brain volume of distribution (VT) (p < 0.001) compared to "Test", where the animals were not previously anesthetized. The VT at "Retest" also decreased (19%) compared to "Test" (p < 0.001). The k2 values in whole-brain were significantly increased by 18% in "Anesthesia-exposed" (p = 0.005) and by 15% in "Retest" (p = 0.008) compared to "Test". However, no significant differences were found in the influx rate constant K1, which is considered as the best parameter to measure the P-gp function. Moreover, Western Blot analysis did not find significant differences in the P-gp expression of animals not pre-exposed to anesthesia ("Test") or pre-exposed animals ("Retest"). To conclude, anesthesia may affect the brain distribution of [18F]MC225 but it does not affect the P-gp expression or function

    Head-to-head comparison of (R)-[C-11]verapamil and [F-18]MC225 in non-human primates, tracers for measuring P-glycoprotein function

    Get PDF
    PURPOSE: P-glycoprotein (P-gp) function is altered in several brain disorders; thus, it is of interest to monitor the P-gp function in vivo using PET. (R)-[11C]verapamil is considered the gold standard tracer to measure the P-gp function; however, it presents some drawbacks that limit its use. New P-gp tracers have been developed with improved properties, such as [18F]MC225. This study compares the characteristics of (R)-[11C]verapamil and [18F]MC225 in the same subjects.METHODS: Three non-human primates underwent 4 PET scans: 2 with (R)-[11C]verapamil and 2 with [18F]MC225, at baseline and after P-gp inhibition. The 30-min PET data were analyzed using 1-Tissue Compartment Model (1-TCM) and metabolite-corrected plasma as input function. Tracer kinetic parameters at baseline and after inhibition were compared. Regional differences and simplified methods to quantify the P-gp function were also assessed.RESULTS: At baseline, [18F]MC225 VT values were higher, and k2 values were lower than those of (R)-[11C]verapamil, whereas K1 values were not significantly different. After inhibition, VT values of the 2 tracers were similar; however, (R)-[11C]verapamil K1 and k2 values were higher than those of [18F]MC225. Significant regional differences between tracers were found at baseline, which disappeared after inhibition. The positive slope of the SUV-TAC was positively correlated to the K1 and VT of both tracers.CONCLUSION: [18F]MC225 and (R)-[11C]verapamil show comparable sensitivity to measure the P-gp function in non-human primates. Moreover, this study highlights the 30-min VT as the best parameter to measure decreases in the P-gp function with both tracers. [18F]MC225 may become the first radiofluorinated tracer able to measure decreases and increases in the P-gp function due to its higher baseline VT.</p

    Impact of an Adenosine A2A Receptor Agonist and Antagonist on Binding of the Dopamine D2 Receptor Ligand [11C]raclopride in the Rodent Striatum

    Get PDF
    Adenosine A2A and dopamine D2 receptors in the basal ganglia form heterotetrameric structures that are involved in the regulation of motor activity and neuropsychiatric functions. The present study examines the A2A receptor-mediated modulation of D2 receptor binding in vivo using positron emission tomography (PET) with the D2 antagonist tracer [11C]raclopride. Healthy male Wistar rats (n = 8) were scanned (60 min dynamic scan) with [11C]raclopride at baseline and 7 days later following an acute administration of the A2A agonist CGS21680 (1 mg/kg), using a MicroPET Focus-220 camera. Nondisplaceable binding potential (BPND) values were calculated using a simplified reference tissue model (SRTM), with cerebellum as the reference tissue. SRTM analysis did not show any significant changes in [11C]raclopride BPND (p = 0.102) in striatum after CGS21680 administration compared to the baseline. As CGS21680 strongly affects hemodynamics, we also used arterial blood sampling and a metabolite-corrected plasma input function for compartment modeling using the reversible two-tissue compartment model (2TCM) to obtain the BPND from the k3/k4 ratio and from the striatum/cerebellum volume of distribution ratio (DVR) in a second group of animals. These rats underwent dynamic [11C]raclopride scans after pretreatment with a vehicle (n = 5), a single dose of CGS21680 (1 mg/kg, n = 5), or a single dose of the A2A antagonist KW6002 (1 mg/kg, n = 5). The parent fraction in plasma was significantly higher in the CGS21680-treated group (p = 0.0001) compared to the vehicle-treated group. GCS21680 administration significantly reduced the striatal k3/k4 ratio (p < 0.01), but k3 and k4 estimates may be less reliable. The BPND (DVR-1) decreased from 1.963 ± 0.27 in the vehicle-treated group to 1.53 ± 0.55 (p = 0.080) or 1.961 ± 0.11 (p = 0.993) after the administration of CGS21680 or KW6002, respectively. Our study suggests that the A2A agonist CGS21680, but not the antagonist KW6002, may reduce the D2 receptor availability in the striatum

    Pharmacokinetic Modeling of (R)-[11C]verapamil to Measure the P-Glycoprotein Function in Nonhuman Primates

    Get PDF
    (R)-[(11)C]verapamil is a radiotracer widely used for the evaluation of the P-glycoprotein (P-gp) function at the blood-brain barrier (BBB). Several studies have evaluated the pharmacokinetics of (R)-[(11)C]verapamil in rats and humans under different conditions. However, to the best of our knowledge, the pharmacokinetics of (R)-[(11)C]verapamil have not yet been evaluated in nonhuman primates. Our study aims to establish (R)-[(11)C]verapamil as a reference P-gp tracer for comparison of a newly developed P-gp positron emission tomography (PET) tracer in a species close to humans. Therefore, the study assesses the kinetics of (R)-[(11)C]verapamil and evaluates the effect of scan duration and P-gp inhibition on estimated pharmacokinetic parameters. Three nonhuman primates underwent two dynamic 91 min PET scans with arterial blood sampling, one at baseline and another after inhibition of the P-gp function. The (R)-[(11)C]verapamil data were analyzed using 1-tissue compartment model (1-TCM) and 2-tissue compartment model fits using plasma-corrected for polar radio-metabolites or non-corrected for radio-metabolites as an input function and with various scan durations (10, 20, 30, 60, and 91 min). The preferred model was chosen according to the Akaike information criterion and the standard errors (SE %) of the estimated parameters. 1-TCM was selected as the model of choice to analyze the (R)-[(11)C]verapamil data at baseline and after inhibition and for all scan durations tested. The volume of distribution (V(T)) and the efflux constant k(2) estimations were affected by the evaluated scan durations, whereas the influx constant K(1) estimations remained relatively constant. After P-gp inhibition (tariquidar, 8 mg/kg), in a 91 min scan duration, the whole-brain V(T) increased significantly up to 208% (p < 0.001) and K(1) up to 159% (p < 0.001) compared with baseline scans. The k(2) values decreased significantly after P-gp inhibition in all the scan durations except for the 91 min scans. This study suggests the use of K(1), calculated with 1-TCM and using short PET scans (10 to 30 min), as a suitable parameter to measure the P-gp function at the BBB of nonhuman primate

    Quantification of P-glycoprotein function at the human blood-brain barrier using [ 18F]MC225 and PET.

    Get PDF
    INTRODUCTION: P-glycoprotein (P-gp) is one of the most studied efflux transporters at the blood-brain barrier. It plays an important role in brain homeostasis by protecting the brain from a variety of endogenous and exogeneous substances. Changes in P-gp function are associated both with the onset of neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease, and with drug-resistance, for example in treatment-resistant depression. The most widely used approach to measure P-gp function in vivo is (R)-[ 11C]verapamil PET. (R)-[ 11C]verapamil is, however, an avid P-gp substrate, which complicates the use of this tracer to measure an increase in P-gp function as its baseline uptake is already very low. [ 18F]MC225 was developed to measure both increases and decreases in P-gp function. AIM: The aim of this study was (1) to identify the pharmacokinetic model that best describes [ 18F]MC225 kinetics in the human brain and (2) to determine test-retest variability. METHODS: Five (2 male, 3 female) of fourteen healthy subjects (8 male, 6 female, age 67 ± 5 years) were scanned twice (injected dose 201 ± 47 MBq) with a minimum interval of 2 weeks between scans. Each scanning session consisted of a 60-min dynamic [ 18F]MC225 scan with continuous arterial sampling. Whole brain grey matter data were fitted to a single tissue compartment model, and to reversible and irreversible two tissue-compartment models to obtain various outcome parameters (in particular the volume of distribution (V T), K i, and the rate constants K 1 and k 2). In addition, a reversible two-tissue compartment model with fixed k 3/k 4 was included. The preferred model was selected based on the weighted Akaike Information Criterion (AIC) score. Test-retest variability (TRTV) was determined to assess reproducibility. RESULTS: Sixty minutes post-injection, the parent fraction was 63.8 ± 4.0%. The reversible two tissue compartment model corrected for plasma metabolites with an estimated blood volume (V B) showed the highest AIC weight score of 34.3 ± 17.6%. The TRVT of the V T for [ 18F]MC225 PET scans was 28.3 ± 20.4% for the whole brain grey matter region using this preferred model. CONCLUSION: [ 18F]MC225 V T, derived using a reversible two-tissue compartment model, is the preferred parameter to describe P-gp function in the human BBB. This outcome parameter has an average test-retest variability of 28%. TRIAL REGISTRATION: EudraCT 2020-001564-28 . Registered 25 May 2020.</p

    Quantification of P-glycoprotein function at the human blood-brain barrier using [ 18F]MC225 and PET.

    Get PDF
    INTRODUCTION: P-glycoprotein (P-gp) is one of the most studied efflux transporters at the blood-brain barrier. It plays an important role in brain homeostasis by protecting the brain from a variety of endogenous and exogeneous substances. Changes in P-gp function are associated both with the onset of neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease, and with drug-resistance, for example in treatment-resistant depression. The most widely used approach to measure P-gp function in vivo is (R)-[ 11C]verapamil PET. (R)-[ 11C]verapamil is, however, an avid P-gp substrate, which complicates the use of this tracer to measure an increase in P-gp function as its baseline uptake is already very low. [ 18F]MC225 was developed to measure both increases and decreases in P-gp function. AIM: The aim of this study was (1) to identify the pharmacokinetic model that best describes [ 18F]MC225 kinetics in the human brain and (2) to determine test-retest variability. METHODS: Five (2 male, 3 female) of fourteen healthy subjects (8 male, 6 female, age 67 ± 5 years) were scanned twice (injected dose 201 ± 47 MBq) with a minimum interval of 2 weeks between scans. Each scanning session consisted of a 60-min dynamic [ 18F]MC225 scan with continuous arterial sampling. Whole brain grey matter data were fitted to a single tissue compartment model, and to reversible and irreversible two tissue-compartment models to obtain various outcome parameters (in particular the volume of distribution (V T), K i, and the rate constants K 1 and k 2). In addition, a reversible two-tissue compartment model with fixed k 3/k 4 was included. The preferred model was selected based on the weighted Akaike Information Criterion (AIC) score. Test-retest variability (TRTV) was determined to assess reproducibility. RESULTS: Sixty minutes post-injection, the parent fraction was 63.8 ± 4.0%. The reversible two tissue compartment model corrected for plasma metabolites with an estimated blood volume (V B) showed the highest AIC weight score of 34.3 ± 17.6%. The TRVT of the V T for [ 18F]MC225 PET scans was 28.3 ± 20.4% for the whole brain grey matter region using this preferred model. CONCLUSION: [ 18F]MC225 V T, derived using a reversible two-tissue compartment model, is the preferred parameter to describe P-gp function in the human BBB. This outcome parameter has an average test-retest variability of 28%. TRIAL REGISTRATION: EudraCT 2020-001564-28 . Registered 25 May 2020.</p

    Quantification of P-glycoprotein function at the human blood-brain barrier using [ 18F]MC225 and PET.

    Get PDF
    INTRODUCTION: P-glycoprotein (P-gp) is one of the most studied efflux transporters at the blood-brain barrier. It plays an important role in brain homeostasis by protecting the brain from a variety of endogenous and exogeneous substances. Changes in P-gp function are associated both with the onset of neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease, and with drug-resistance, for example in treatment-resistant depression. The most widely used approach to measure P-gp function in vivo is (R)-[ 11C]verapamil PET. (R)-[ 11C]verapamil is, however, an avid P-gp substrate, which complicates the use of this tracer to measure an increase in P-gp function as its baseline uptake is already very low. [ 18F]MC225 was developed to measure both increases and decreases in P-gp function. AIM: The aim of this study was (1) to identify the pharmacokinetic model that best describes [ 18F]MC225 kinetics in the human brain and (2) to determine test-retest variability. METHODS: Five (2 male, 3 female) of fourteen healthy subjects (8 male, 6 female, age 67 ± 5 years) were scanned twice (injected dose 201 ± 47 MBq) with a minimum interval of 2 weeks between scans. Each scanning session consisted of a 60-min dynamic [ 18F]MC225 scan with continuous arterial sampling. Whole brain grey matter data were fitted to a single tissue compartment model, and to reversible and irreversible two tissue-compartment models to obtain various outcome parameters (in particular the volume of distribution (V T), K i, and the rate constants K 1 and k 2). In addition, a reversible two-tissue compartment model with fixed k 3/k 4 was included. The preferred model was selected based on the weighted Akaike Information Criterion (AIC) score. Test-retest variability (TRTV) was determined to assess reproducibility. RESULTS: Sixty minutes post-injection, the parent fraction was 63.8 ± 4.0%. The reversible two tissue compartment model corrected for plasma metabolites with an estimated blood volume (V B) showed the highest AIC weight score of 34.3 ± 17.6%. The TRVT of the V T for [ 18F]MC225 PET scans was 28.3 ± 20.4% for the whole brain grey matter region using this preferred model. CONCLUSION: [ 18F]MC225 V T, derived using a reversible two-tissue compartment model, is the preferred parameter to describe P-gp function in the human BBB. This outcome parameter has an average test-retest variability of 28%. TRIAL REGISTRATION: EudraCT 2020-001564-28 . Registered 25 May 2020.</p

    Quantification of P-glycoprotein function at the human blood-brain barrier using [ 18F]MC225 and PET.

    Get PDF
    INTRODUCTION: P-glycoprotein (P-gp) is one of the most studied efflux transporters at the blood-brain barrier. It plays an important role in brain homeostasis by protecting the brain from a variety of endogenous and exogeneous substances. Changes in P-gp function are associated both with the onset of neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease, and with drug-resistance, for example in treatment-resistant depression. The most widely used approach to measure P-gp function in vivo is (R)-[ 11C]verapamil PET. (R)-[ 11C]verapamil is, however, an avid P-gp substrate, which complicates the use of this tracer to measure an increase in P-gp function as its baseline uptake is already very low. [ 18F]MC225 was developed to measure both increases and decreases in P-gp function. AIM: The aim of this study was (1) to identify the pharmacokinetic model that best describes [ 18F]MC225 kinetics in the human brain and (2) to determine test-retest variability. METHODS: Five (2 male, 3 female) of fourteen healthy subjects (8 male, 6 female, age 67 ± 5 years) were scanned twice (injected dose 201 ± 47 MBq) with a minimum interval of 2 weeks between scans. Each scanning session consisted of a 60-min dynamic [ 18F]MC225 scan with continuous arterial sampling. Whole brain grey matter data were fitted to a single tissue compartment model, and to reversible and irreversible two tissue-compartment models to obtain various outcome parameters (in particular the volume of distribution (V T), K i, and the rate constants K 1 and k 2). In addition, a reversible two-tissue compartment model with fixed k 3/k 4 was included. The preferred model was selected based on the weighted Akaike Information Criterion (AIC) score. Test-retest variability (TRTV) was determined to assess reproducibility. RESULTS: Sixty minutes post-injection, the parent fraction was 63.8 ± 4.0%. The reversible two tissue compartment model corrected for plasma metabolites with an estimated blood volume (V B) showed the highest AIC weight score of 34.3 ± 17.6%. The TRVT of the V T for [ 18F]MC225 PET scans was 28.3 ± 20.4% for the whole brain grey matter region using this preferred model. CONCLUSION: [ 18F]MC225 V T, derived using a reversible two-tissue compartment model, is the preferred parameter to describe P-gp function in the human BBB. This outcome parameter has an average test-retest variability of 28%. TRIAL REGISTRATION: EudraCT 2020-001564-28 . Registered 25 May 2020.</p
    • …
    corecore