47 research outputs found

    Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions

    Full text link
    [EN] Perennial ryegrass (Lolium perenne) is the predominant forage crop in the equatorial highland zones of Colombia due to its high nutritional value and versatility to produce both milk and meat. This study aimed to determine the relationship between the relative depletion of usable soil water and the Ks values of canopy expansion and closure stomatal of perennial ryegrass, as well as to identify the threshold values of water stress. The experiment was carried out in pots under a controlled environment condition. These pots were arranged in a completely randomized manner. The experiment consisted of five treatments¿including control treatment¿of water deficits in the soil that progressively increased the depletion level as the crop cycle developed. This generated a wide range of conditions in the growth stages. For each treatment, four repetitions were performed Biomass production was significantly affected by water stress. The results show that the upper and lower thresholds of Ks were 0.28 and 1.3 of the depletion level (p) of the total available water (TAW) in the soil for the expansion of the canopy (CE), and 0.25 and 1.1 p of the TAW for stomatal closure (gs). Quadratic functions were fitted for both the CE (R2 = 0.72) and CS (R2 = 0.73); moreover, the Ks function of FAO-AquaCrop with positive shape factor (sf) was as follows: sf = 11, RMSE 0.22 for CE, and sf = 4.3, RMSE 0.19 for gs. Our results indicate that ryegrass is moderately sensitive to water stress. The differences found between the Ks function of FAO and the experimental data call for the need to use modeling with parameters adapted for each case.The research leading to this report was supported by the Ministry of Agriculture and Rural Development of Colombia, the Corporacion Colombiana de Investigacion Agropecuaria, AGROSAVIA and Ibero-American Program of Cooperation INIA Doctorate/2015, the project 14152007O5490-692/2007.Terán-Chaves, CA.; Garcia-Prats, A.; Polo-Murcia, SM. (2022). Water Stress Thresholds and Evaluation of Coefficient Ks for Perennial Ryegrass in Tropical Conditions. Water. 14(11):1-16. https://doi.org/10.3390/w14111696116141

    A hydroeconomic modeling framework for optimal integrated management of forest and water

    Full text link
    [EN] Forests play a determinant role in the hydrologic cycle, with water being the most important ecosystem service they provide in semiarid regions. However, this contribution is usually neither quantified nor explicitly valued. The aim of this study is to develop a novel hydroeconomic modeling framework for assessing and designing the optimal integrated forest and water management for forested catchments. The optimization model explicitly integrates changes in water yield in the stands (increase in groundwater recharge) induced by forest management and the value of the additional water provided to the system. The model determines the optimal schedule of silvicultural interventions in the stands of the catchment in order to maximize the total net benefit in the system. Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs according to stand density and canopy cover were modeled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. In order to illustrate the presented modeling framework, a case study was carried out in a planted pine forest (Pinus halepensis Mill.) located in south-western Valencia province (Spain). The optimized scenario increased groundwater recharge. This novel modeling framework can be used in the design of a payment for environmental services scheme in which water beneficiaries could contribute to fund and promote efficient forest management operations.This study is a component of four research projects: "CGL2011-28776-C02-02, HYDROSIL'', ''CGL2013-48424-C2-1-R, IMPADAPT'' and CGL2014-58127-C3-2, SILWAMED, funded by the Spanish Ministry of Science and Innovation and FEDER funds, and Determination of hydrologic and forest recovery factors in Mediterranean forests and their social perception, supported by the Ministry of Environment, Rural and Marine Affairs. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana) and the VAERSA staff for their support in allowing the use of the La Hunde experimental forest and for their assistance in carrying out the fieldwork. Experimental data belong to Reforest research group. For any question about the data, contact Antonio D. del Campo ([email protected]).Garcia-Prats, A.; Campo GarcĂ­a, ADD.; Pulido-Velazquez, M. (2016). A hydroeconomic modeling framework for optimal integrated management of forest and water. Water Resources Research. 52(10):8277-8294. https://doi.org/10.1002/2015WR018273S827782945210AndrĂ©assian, V. (2004). Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 291(1-2), 1-27. doi:10.1016/j.jhydrol.2003.12.015BarguĂ©s Tobella, A., Reese, H., Almaw, A., Bayala, J., Malmer, A., Laudon, H., & Ilstedt, U. (2014). The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resources Research, 50(4), 3342-3354. doi:10.1002/2013wr015197Barron, O. V., Crosbie, R. S., Dawes, W. R., Charles, S. P., Pickett, T., & Donn, M. J. (2012). Climatic controls on diffuse groundwater recharge across Australia. Hydrology and Earth System Sciences, 16(12), 4557-4570. doi:10.5194/hess-16-4557-2012Bellot, J., Bonet, A., Sanchez, J. ., & Chirino, E. (2001). Likely effects of land use changes on the runoff and aquifer recharge in a semiarid landscape using a hydrological model. Landscape and Urban Planning, 55(1), 41-53. doi:10.1016/s0169-2046(01)00118-9Bellot, J., & Chirino, E. (2013). Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas. Ecological Modelling, 266, 30-41. doi:10.1016/j.ecolmodel.2013.07.002Bent, G. C. (2001). Effects of forest-management activities on runoff components and ground-water recharge to Quabbin Reservoir, central Massachusetts. Forest Ecology and Management, 143(1-3), 115-129. doi:10.1016/s0378-1127(00)00511-9Birol, E., Karousakis, K., & Koundouri, P. (2006). Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecological Economics, 60(1), 145-156. doi:10.1016/j.ecolecon.2006.06.002Birot , Y. P. Marc 2011 3 4Bosch, J. M., & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55(1-4), 3-23. doi:10.1016/0022-1694(82)90117-2Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1-4), 28-61. doi:10.1016/j.jhydrol.2004.12.010Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil for the trees? Agriculture, Ecosystems & Environment, 104(1), 185-228. doi:10.1016/j.agee.2004.01.015Burgess, S. S. O., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K., Khan, A. A. H., & Bleby, T. M. (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21(9), 589-598. doi:10.1093/treephys/21.9.589Cai, X., McKinney, D. C., & Lasdon, L. S. (2002). A framework for sustainability analysis in water resources management and application to the Syr Darya Basin. Water Resources Research, 38(6), 21-1-21-14. doi:10.1029/2001wr000214Calabuig-Vila , E. 2012Calder, I. R. (2007). Forests and water—Ensuring forest benefits outweigh water costs. Forest Ecology and Management, 251(1-2), 110-120. doi:10.1016/j.foreco.2007.06.015Chen, C., Eamus, D., Cleverly, J., Boulain, N., Cook, P., Zhang, L., … Yu, Q. (2014). Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland. Journal of Hydrology, 519, 1084-1096. doi:10.1016/j.jhydrol.2014.08.032Dawes, W., Ali, R., Varma, S., Emelyanova, I., Hodgson, G., & McFarlane, D. (2012). Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia. Hydrology and Earth System Sciences, 16(8), 2709-2722. doi:10.5194/hess-16-2709-2012Del Campo, A. D., Fernandes, T. J. G., & Molina, A. J. (2014). Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research, 133(5), 879-894. doi:10.1007/s10342-014-0805-7FAO 2015 Sustainable Forest Management (SFM) Toolbox http://www.fao.org/sustainable-forest-management/toolbox/sfm-home/en/Gallart, F., & Llorens, P. (2003). Catchment Management under Environmental Change: Impact of Land Cover Change on Water Resources. Water International, 28(3), 334-340. doi:10.1080/02508060308691707Garcia-Prats, A., Antonio, D. C., TarcĂ­sio, F. J. G., & Antonio, M. J. (2015). Development of a Keetch and Byram—Based drought index sensitive to forest management in Mediterranean conditions. Agricultural and Forest Meteorology, 205, 40-50. doi:10.1016/j.agrformet.2015.02.009Gee, G. W., Fayer, M. J., Rockhold, M. L., Wierenga, P. J., Young, M. H., & Andraski, B. J. (1994). Variations in Water Balance and Recharge Potential at Three Western Desert Sites. Soil Science Society of America Journal, 58(1), 63. doi:10.2136/sssaj1994.03615995005800010009xGuan, H., Simunek, J., Newman, B. D., & Wilson, J. L. (2010). Modelling investigation of water partitioning at a semiarid ponderosa pine hillslope. Hydrological Processes, 24(9), 1095-1105. doi:10.1002/hyp.7571Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., MedellĂ­n-Azuara, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375(3-4), 627-643. doi:10.1016/j.jhydrol.2009.06.037Heinz, I., Pulido-Velazquez, M., Lund, J. R., & Andreu, J. (2007). Hydro-economic Modeling in River Basin Management: Implications and Applications for the European Water Framework Directive. Water Resources Management, 21(7), 1103-1125. doi:10.1007/s11269-006-9101-8Hernandez-Santana, V., Asbjornsen, H., Sauer, T., Isenhart, T., Schilling, K., & Schultz, R. (2011). Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape. Forest Ecology and Management, 261(8), 1415-1427. doi:10.1016/j.foreco.2011.01.027Ilstedt, U., BarguĂ©s Tobella, A., BaziĂ©, H. R., Bayala, J., Verbeeten, E., Nyberg, G., … Malmer, A. (2016). Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Scientific Reports, 6(1). doi:10.1038/srep21930Jack, B. K., Kousky, C., & Sims, K. R. E. (2008). Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proceedings of the National Academy of Sciences, 105(28), 9465-9470. doi:10.1073/pnas.0705503104Jhorar, R. K., van Dam, J. C., Bastiaanssen, W. G. M., & Feddes, R. A. (2004). Calibration of effective soil hydraulic parameters of heterogeneous soil profiles. Journal of Hydrology, 285(1-4), 233-247. doi:10.1016/j.jhydrol.2003.09.003Koundouri, P. (2004). Current Issues in the Economics of Groundwater Resource Management. Journal of Economic Surveys, 18(5), 703-740. doi:10.1111/j.1467-6419.2004.00234.xLasch, P., Badeck, F.-W., Suckow, F., Lindner, M., & Mohr, P. (2005). Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). Forest Ecology and Management, 207(1-2), 59-74. doi:10.1016/j.foreco.2004.10.034Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., … Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83. doi:10.1016/j.jenvman.2014.07.030Lund, J. R., Cai, X., & Characklis, G. W. (2006). Economic Engineering of Environmental and Water Resource Systems. Journal of Water Resources Planning and Management, 132(6), 399-402. doi:10.1061/(asce)0733-9496(2006)132:6(399)Molina, A. J., & del Campo, A. D. (2012). The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management, 269, 206-213. doi:10.1016/j.foreco.2011.12.037Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522. doi:10.1029/wr012i003p00513Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6Nicks , A. D. G. A. Gander 1994 Proceedings of the 5th International Conference on Computers in AgriculturePeck, A. J., & Williamson, D. R. (1987). Effects of forest clearing on groundwater. Journal of Hydrology, 94(1-2), 47-65. doi:10.1016/0022-1694(87)90032-1Pulido-Velázquez, M., Andreu, J., & Sahuquillo, A. (2006). Economic Optimization of Conjunctive Use of Surface Water and Groundwater at the Basin Scale. Journal of Water Resources Planning and Management, 132(6), 454-467. doi:10.1061/(asce)0733-9496(2006)132:6(454)Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., & Pulido-Velazquez, D. (2008). Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecological Economics, 66(1), 51-65. doi:10.1016/j.ecolecon.2007.12.016Pulido-Velazquez, M., Alvarez-Mendiola, E., & Andreu, J. (2013). Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. Journal of Water Resources Planning and Management, 139(5), 583-592. doi:10.1061/(asce)wr.1943-5452.0000262Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577-1593. doi:10.1111/j.1365-2486.2005.01026.xScanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20(15), 3335-3370. doi:10.1002/hyp.6335Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (2001). rosetta : a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3-4), 163-176. doi:10.1016/s0022-1694(01)00466-8Sprintsin, M., Cohen, S., Maseyk, K., Rotenberg, E., GrĂĽnzweig, J., Karnieli, A., … Yakir, D. (2011). Long term and seasonal courses of leaf area index in a semi-arid forest plantation. Agricultural and Forest Meteorology, 151(5), 565-574. doi:10.1016/j.agrformet.2011.01.001Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55. doi:10.2307/210739Ungar, E. D., Rotenberg, E., Raz-Yaseef, N., Cohen, S., Yakir, D., & Schiller, G. (2013). Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. Forest Ecology and Management, 298, 39-51. doi:10.1016/j.foreco.2013.03.003Van Dijk, A. I. J. M., & Keenan, R. J. (2007). Planted forests and water in perspective. Forest Ecology and Management, 251(1-2), 1-9. doi:10.1016/j.foreco.2007.06.010Van Dijk, A. I. J. M., Hairsine, P. B., Arancibia, J. P., & Dowling, T. I. (2007). Reforestation, water availability and stream salinity: A multi-scale analysis in the Murray-Darling Basin, Australia. Forest Ecology and Management, 251(1-2), 94-109. doi:10.1016/j.foreco.2007.06.012Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal, 44(5), 892. doi:10.2136/sssaj1980.03615995004400050002xVan Genuchten, M. T., & Jury, W. A. (1987). Progress in unsaturated flow and transport modeling. Reviews of Geophysics, 25(2), 135. doi:10.1029/rg025i002p00135Wang, X.-P., Berndtsson, R., Li, X.-R., & Kang, E.-S. (2004). Water balance change for a re-vegetated xerophyte shrub area/Changement du bilan hydrique d’une zone replantĂ©e d’arbustes xĂ©rophiles. Hydrological Sciences Journal, 49(2). doi:10.1623/hysj.49.2.283.34841West, P. W. (2009). Tree and Forest Measurement. doi:10.1007/978-3-540-95966-3Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., … Timouk, F. (2004). Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3-4), 241-258. doi:10.1016/j.agrformet.2004.04.008Willmott, C. J. (1981). ON THE VALIDATION OF MODELS. Physical Geography, 2(2), 184-194. doi:10.1080/02723646.1981.10642213Willmott, C. J. (1984). On the Evaluation of Model Performance in Physical Geography. Spatial Statistics and Models, 443-460. doi:10.1007/978-94-017-3048-8_23Wyatt, C. J. W., O’Donnell, F. C., & Springer, A. E. (2014). Semi-Arid Aquifer Responses to Forest Restoration Treatments and Climate Change. Groundwater, 53(2), 207-216. doi:10.1111/gwat.12184Zavala, M. A., Espelta, J. M., & Retana, J. (2000). Constraints and trade-offs in Mediterranean plant communities: The case of holm oak-Aleppo pine forests. The Botanical Review, 66(1), 119-149. doi:10.1007/bf0285778

    System Dynamics Modeling for Supporting Drought-Oriented Management of the Jucar River System, Spain

    Full text link
    [EN] The management of water in systems where the balance between resources and demands is already precarious can pose a challenge and it can be easily disrupted by drought episodes. Anticipated drought management has proved to be one of the main strategies to reduce their impact. Drought economic, environmental, and social impacts affect different sectors that are often interconnected. There is a need for water management models able to acknowledge the complex interactions between multiple sectors, activities, and variables to study the response of water resource systems to drought management strategies. System dynamics (SD) is a modeling methodology that facilitates the analysis of interactions and feedbacks within and between sectors. Although SD has been applied for water resource management, there is a lack of SD models able to regulate complex water resource systems on a monthly time scale and considering multiple reservoir operating rules, demands, and policies. In this paper, we present an SD model for the strategic planning of drought management in the Jucar River system, incorporating dynamic reservoir operating rules, policies, and drought management strategies triggered by a system state index. The DSS combines features from early warning and information systems, allowing for the simulation of drought strategies, evaluating their economic impact, and exploring new management options in the same environment. The results for the historical period show that drought early management can be beneficial for the performance of the system, monitoring the current state of the system, and activating drought management measures results in a substantial reduction of the economic impact of droughts.The data used in this study was obtained from the references included. We acknowledge the European Research Area for Climate Services consortium (ER4CS) and the Agencia Estatal de Investigacion for their financial support to this research under the INNOVA project (Grant Agreement: 690462; PCIN-2017-066). This study has also been partially funded by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion y Universidades (MICIU) of Spain.Rubio-Martin, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.; Garcia-Prats, A. (2020). System Dynamics Modeling for Supporting Drought-Oriented Management of the Jucar River System, Spain. Water. 12(5):1-19. https://doi.org/10.3390/w12051407S119125Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1-2), 202-216. doi:10.1016/j.jhydrol.2010.07.012Momblanch, A., Paredes-Arquiola, J., Munné, A., Manzano, A., Arnau, J., & Andreu, J. (2015). Managing water quality under drought conditions in the Llobregat River Basin. Science of The Total Environment, 503-504, 300-318. doi:10.1016/j.scitotenv.2014.06.069Van Loon, A. F., & Van Lanen, H. A. J. (2013). Making the distinction between water scarcity and drought using an observation-modeling framework. Water Resources Research, 49(3), 1483-1502. doi:10.1002/wrcr.20147Mishra, A. K., & Singh, V. P. (2011). Drought modeling – A review. Journal of Hydrology, 403(1-2), 157-175. doi:10.1016/j.jhydrol.2011.03.049Wilhite, D. A., Sivakumar, M. V. K., & Pulwarty, R. (2014). Managing drought risk in a changing climate: The role of national drought policy. Weather and Climate Extremes, 3, 4-13. doi:10.1016/j.wace.2014.01.002Marcos-Garcia, P., Lopez-Nicolas, A., & Pulido-Velazquez, M. (2017). Combined use of relative drought indices to analyze climate change impact on meteorological and hydrological droughts in a Mediterranean basin. Journal of Hydrology, 554, 292-305. doi:10.1016/j.jhydrol.2017.09.028Estrela, T., & Vargas, E. (2012). Drought Management Plans in the European Union. The Case of Spain. Water Resources Management, 26(6), 1537-1553. doi:10.1007/s11269-011-9971-2Pedro-Monzonís, M., Solera, A., Ferrer, J., Estrela, T., & Paredes-Arquiola, J. (2015). A review of water scarcity and drought indexes in water resources planning and management. Journal of Hydrology, 527, 482-493. doi:10.1016/j.jhydrol.2015.05.003Zaniolo, M., Giuliani, M., Castelletti, A. F., & Pulido-Velazquez, M. (2018). Automatic design of basin-specific drought indexes for highly regulated water systems. Hydrology and Earth System Sciences, 22(4), 2409-2424. doi:10.5194/hess-22-2409-2018Carmona, M., Máñez Costa, M., Andreu, J., Pulido-Velazquez, M., Haro-Monteagudo, D., Lopez-Nicolas, A., & Cremades, R. (2017). Assessing the effectiveness of Multi-Sector Partnerships to manage droughts: The case of the Jucar river basin. Earth’s Future, 5(7), 750-770. doi:10.1002/2017ef000545PALLOTTINO, S., SECHI, G., & ZUDDAS, P. (2005). A DSS for water resources management under uncertainty by scenario analysis. Environmental Modelling & Software, 20(8), 1031-1042. doi:10.1016/j.envsoft.2004.09.012Sechi, G. M., & Sulis, A. (2010). Drought mitigation using operative indicators in complex water systems. Physics and Chemistry of the Earth, Parts A/B/C, 35(3-5), 195-203. doi:10.1016/j.pce.2009.12.001Svoboda, M. D., Fuchs, B. A., Poulsen, C. C., & Nothwehr, J. R. (2015). The drought risk atlas: Enhancing decision support for drought risk management in the United States. Journal of Hydrology, 526, 274-286. doi:10.1016/j.jhydrol.2015.01.006Buttafuoco, G., Caloiero, T., Ricca, N., & Guagliardi, I. (2018). Assessment of drought and its uncertainty in a southern Italy area (Calabria region). Measurement, 113, 205-210. doi:10.1016/j.measurement.2017.08.007Iglesias, A., & Garrote, L. (2015). Adaptation strategies for agricultural water management under climate change in Europe. Agricultural Water Management, 155, 113-124. doi:10.1016/j.agwat.2015.03.014Lewandowski, J., Meinikmann, K., & Krause, S. (2020). Groundwater–Surface Water Interactions: Recent Advances and Interdisciplinary Challenges. Water, 12(1), 296. doi:10.3390/w12010296Forrester, J. W. (1968). Industrial Dynamics—After the First Decade. Management Science, 14(7), 398-415. doi:10.1287/mnsc.14.7.398Sušnik, J., Molina, J.-L., Vamvakeridou-Lyroudia, L. S., Savić, D. A., & Kapelan, Z. (2012). Comparative Analysis of System Dynamics and Object-Oriented Bayesian Networks Modelling for Water Systems Management. Water Resources Management, 27(3), 819-841. doi:10.1007/s11269-012-0217-8Mirchi, A., Madani, K., Watkins, D., & Ahmad, S. (2012). Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resources Management, 26(9), 2421-2442. doi:10.1007/s11269-012-0024-2Simonovic, S. (2002). World water dynamics: global modeling of water resources. Journal of Environmental Management, 66(3), 249-267. doi:10.1016/s0301-4797(02)90585-2Saysel, A. K., Barlas, Y., & Yenigün, O. (2002). Environmental sustainability in an agricultural development project: a system dynamics approach. Journal of Environmental Management, 64(3), 247-260. doi:10.1006/jema.2001.0488Winz, I., Brierley, G., & Trowsdale, S. (2008). The Use of System Dynamics Simulation in Water Resources Management. Water Resources Management, 23(7), 1301-1323. doi:10.1007/s11269-008-9328-7Nikolic, V. V., & Simonovic, S. P. (2015). Multi-method Modeling Framework for Support of Integrated Water Resources Management. Environmental Processes, 2(3), 461-483. doi:10.1007/s40710-015-0082-6Madani, K., & Mariño, M. A. (2009). System Dynamics Analysis for Managing Iran’s Zayandeh-Rud River Basin. Water Resources Management, 23(11), 2163-2187. doi:10.1007/s11269-008-9376-zGleick, P. H. (2000). A Look at Twenty-first Century Water Resources Development. Water International, 25(1), 127-138. doi:10.1080/02508060008686804Qaiser, K., Ahmad, S., Johnson, W., & Batista, J. (2011). Evaluating the impact of water conservation on fate of outdoor water use: A study in an arid region. Journal of Environmental Management, 92(8), 2061-2068. doi:10.1016/j.jenvman.2011.03.031Sušnik, J., Vamvakeridou-Lyroudia, L. S., Savić, D. A., & Kapelan, Z. (2012). Integrated System Dynamics Modelling for water scarcity assessment: Case study of the Kairouan region. Science of The Total Environment, 440, 290-306. doi:10.1016/j.scitotenv.2012.05.085Sehlke, G., & Jacobson, J. (2005). System Dynamics Modeling of Transboundary Systems: The Bear River Basin Model. Ground Water, 43(5), 722-730. doi:10.1111/j.1745-6584.2005.00065.xLi, L., & Simonovic, S. P. (2002). System dynamics model for predicting floods from snowmelt in North American prairie watersheds. Hydrological Processes, 16(13), 2645-2666. doi:10.1002/hyp.1064Ahmad, S., & Prashar, D. (2010). Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model. Water Resources Management, 24(13), 3371-3395. doi:10.1007/s11269-010-9611-2Apperl, B., Pulido-Velazquez, M., Andreu, J., & Karjalainen, T. P. (2015). Contribution of the multi-attribute value theory to conflict resolution in groundwater management – application to the Mancha Oriental groundwater system, Spain. Hydrology and Earth System Sciences, 19(3), 1325-1337. doi:10.5194/hess-19-1325-2015Macian-Sorribes, H., & Pulido-Velazquez, M. (2017). Integrating Historical Operating Decisions and Expert Criteria into a DSS for the Management of a Multireservoir System. Journal of Water Resources Planning and Management, 143(1), 04016069. doi:10.1061/(asce)wr.1943-5452.0000712Escriva-Bou, A., Pulido-Velazquez, M., & Pulido-Velazquez, D. (2017). Economic Value of Climate Change Adaptation Strategies for Water Management in Spain’s Jucar Basin. Journal of Water Resources Planning and Management, 143(5), 04017005. doi:10.1061/(asce)wr.1943-5452.0000735Pulido-Velazquez, M. A., Sahuquillo-Herraiz, A., Camilo Ochoa-Rivera, J., & Pulido-Velazquez, D. (2005). Modeling of stream–aquifer interaction: the embedded multireservoir model. Journal of Hydrology, 313(3-4), 166-181. doi:10.1016/j.jhydrol.2005.02.026Sahuquillo, A. (1983). An eigenvalue numerical technique for solving unsteady linear groundwater models continuously in time. Water Resources Research, 19(1), 87-93. doi:10.1029/wr019i001p00087Estrela, T., & Sahuquillo, A. (1997). Modeling the Response of a Karstic Spring at Arteta Aquifer in Spain. Ground Water, 35(1), 18-24. doi:10.1111/j.1745-6584.1997.tb00055.xAndreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-xHaro-Monteagudo, D., Solera, A., & Andreu, J. (2017). Drought early warning based on optimal risk forecasts in regulated river systems: Application to the Jucar River Basin (Spain). Journal of Hydrology, 544, 36-45. doi:10.1016/j.jhydrol.2016.11.022Howitt, R. E. (1995). Positive Mathematical Programming. American Journal of Agricultural Economics, 77(2), 329-342. doi:10.2307/1243543Malard, J. J., Inam, A., Hassanzadeh, E., Adamowski, J., Tuy, H. A., & Melgar-Quiñonez, H. (2017). Development of a software tool for rapid, reproducible, and stakeholder-friendly dynamic coupling of system dynamics and physically-based models. Environmental Modelling & Software, 96, 410-420. doi:10.1016/j.envsoft.2017.06.053Vidal-Legaz, B., Martínez-Fernández, J., Picón, A. S., & Pugnaire, F. I. (2013). Trade-offs between maintenance of ecosystem services and socio-economic development in rural mountainous communities in southern Spain: A dynamic simulation approach. Journal of Environmental Management, 131, 280-297. doi:10.1016/j.jenvman.2013.09.03

    Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks

    Full text link
    [EN] Hydrology-oriented forest management sets water as key factor of the forest management for adaptation due to water is the most limiting factor in the Mediterranean forest ecosystems. The aim of this study was to apply Bayesian Network modeling to assess potential indirect effects and trade-offs when hydrology-oriented forest management is applied to a real Mediterranean forest ecosystem. Water, carbon and nitrogen cycles, and forest fire risk were included in the modeling framework. Field data from experimental plots were employed to calibrate and validate the mechanistic Biome-BGCMuSo model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere. Many other 50-year long scenarios with different conditions to the ones measured in the field experiment were simulated and the outcomes employed to build the Bayesian Network in a linked chain of models. Hydrology-oriented forest management was very positive insofar as more water was made available to the stand because of an interception reduction. This resource was made available to the stand, which increased the evapotranspiration and its components, the soil water content and a slightly increase of deep percolation. Conversely, Stemflow was drastically reduced. No effect was observed on Runof due to the thinning treatment. The soil organic carbon content was also increased which in turn caused a greater respiration. The long-term effect of the thinning treatment on the LAI was very positive. This was undoubtedly due to the increased vigor generated by the greater availability of water and nutrients for the stand and the reduction of competence between trees. This greater activity resulted in an increase in GPP and vegetation carbon, and therefore, we would expect a higher carbon sequestration. It is worth emphasizing that this extra amount of water and nutrients was taken up by the stand and did not entail any loss of nutrients.This study is a component of research projects: HYDROSIL (CGL2011-28776-C02-02), SILWAMED (CGL2014-58127-C3-2) and CEHYRFO-MED (CGL2017-86839-C3-2-R) funded by the Spanish Ministry of Science and Innovation and FEDER funds. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana), ACCIONA for their support in allowing the use of the experimental forest and for their assistance in carrying out the fieldwork.Garcia-Prats, A.; González Sanchis, MDC.; Campo García, ADD.; Lull, C. (2018). Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks. The Science of The Total Environment. 639:725-741. https://doi.org/10.1016/j.scitotenv.2018.05.134S72574163

    Sparse N-way Partial Least Squares by L1-penalization

    Full text link
    [EN] N-PLS, as the natural extension of PLS to N-way structures, tries to maximize the covariance between an X and a Y N-way data arrays. It provides a useful framework for fitting prediction models to N-way data. However, N-PLS by itself does not perform variable selection, which indeed can facilitate interpretation in different situations (e.g. the so-called ¿¿omics¿ data). In this work, we propose a method for variable selection within N-PLS by introducing sparsity in the weights matrices WJ and WK by means of L1-penalization. The sparse version of N-PLS is able to provide lower prediction errors by filtering all the noise variables and to further improve interpretability and usability of the N-PLS results. To test Sparse N-PLS performance two different simulated data sets were used, whereas to show its utility in a biological context a real time course metabolomics data set was used.Hervás-Marín, D.; Prats-Montalbán, JM.; Garcia-Cañaveras, J.; Lahoz Rodríguez, AG.; Ferrer, A. (2019). Sparse N-way Partial Least Squares by L1-penalization. Chemometrics and Intelligent Laboratory Systems. 185:85-91. https://doi.org/10.1016/j.chemolab.2019.01.004S859118

    Determinación de Requerimientos Hídricos para Avena Forrajera (Avena sativa L.) y Raigrás (Lolium perenne) en la Sabana de Bogotá (Colombia)

    Full text link
    [ES] Se determinó el consumo hídrico de especies forrajeras con la huella hídrica y las funciones de producción respecto al agua para los cultivos de avena forrajera (Avena sativa L.) y raigrás (Lolium perenne), teniendo en cuenta la evaluación de la energía presente en la atmósfera en la región. Se generó un gradiente de humedades según Hanks et al., (1976), para obtener las respuestas. Se llevaron a cabo 15 experimentos para generar el consumo hídrico, la huella hídrica, la producción de biomasa y la productividad hídrica normalizada (WP*). Se consideraron nuevas investigaciones sobre uso de agua, Steduto et al., (2007) implementadas por el modelo AquaCrop (FAO) para la determinación de la biomasa y la producción agrícola a partir del agua para especies herbáceas. El trabajo se desarrolló en el C.I. Tibaitatá, Corpoica (Colombia) (4°42¿N; 74°12¿W), Bogotá, a 2543 msnm. Para avena forajera se encontró una función de producción de segundo orden que define su huella hídrica en forma variable con un punto óptimo de 390 mm para una producción de 22 t ha-1 y una WP* de 18,97 g m-2, mientras que para raigrás una línea recta con un punto máximo de 410 mm y una producción de 10 t ha-1, alcanzando una WP* de 18,08 g m-2 de siembra a primer corte y de 14,66 para los cortes posteriores. Se obtuvieron las curvas del cultivo Kc, Kcb, y Ke de sus respectivos ciclos productivos, con puntos máximos de Kcb de 1,1 para raigrás, y 1,14 para avena forrajera.[EN] Water consumption of forage species with the water footprint and production functions to water for crops of forage oats (Avena sativa L.) and ryegrass (Lolium perenne) was determined, taking into account the evaluation of the energy in the atmosphere in the region. Moisture gradient as Hanks et al., (1976) was generated, to obtain the answers. It took just 15 experiments to generate water consumption, water footprint, biomass production and water productivity standard (WP*). New research on water use, Steduto et al., (2007) implemented by the model AquaCrop (FAO) for the determination of biomass and agricultural production from water in herbaceous species were considered. The work was developed in the C. I. Tibaitatá, Corpoica (Colombia) (4°42¿N, 74° 12¿W), Bogotá, 2543 meters. To forage oats production function that defines second-order its water footprint variably with an optimum of 390 mm for a production of 22 t.ha-1 and WP* of 18.97 g.m-2 was found, while ryegrass that a line with a peak of 410 mm and an output line 10 t.ha-1, reaching a WP* 18.08 gm-2 of seed and a first cut for subsequent cuts 14.66. Crop Kc curves, Kcb were obtained and Ke of their production cycles, with peaks of 1.1 Kcb for ryegrass and forage oats to 1.18.Terán-Chaves, CA.; Murcia Contreras, G.; Garcia-Prats, A. (2014). Determinación de Requerimientos Hídricos para Avena Forrajera (Avena sativa L.) y Raigrás (Lolium perenne) en la Sabana de Bogotá (Colombia). Revista Facultad Nacional de Agronomía. 67(2):1157-1159. http://hdl.handle.net/10251/104775S1157115967

    Biomarker comparison and selection for prostate cancer detection in Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI)

    Full text link
    [EN] In this work, the capability of imaging biomarkers obtained from multivariate curve resolution-alternating least squares (MCR-ALS), in combination with those obtained from first and second-generation pharmacokinetic models, have been studied for improving prostate cancer tumor depiction using partial least squares- discriminant analysis (PLS-DA). The main goal of this work is to improve tissue classification properties selecting the best biomarkers in terms of prediction. A wrapped double cross-validation method has been applied for the variable selection process. Using the best PLS-DA model, prostate tissues can be classified obtaining 13.4% of false negatives and 7.4% of false positives. Using MCR-ALS biomarkers yields the best models in terms of parsimony and classification performance.This research has been supported by "Generalitat Valenciana (Conselleria d'Educacio, Investigacio, Cultura I Esport)" under the project AICO/2016/061.Aguado-Sarrió, E.; Prats-Montalbán, JM.; Sanz-Requena, R.; Garcia-Marti, G.; Marti-Bonmati, L.; Ferrer, A. (2017). Biomarker comparison and selection for prostate cancer detection in Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI). Chemometrics and Intelligent Laboratory Systems. 165:38-45. https://doi.org/10.1016/j.chemolab.2017.04.003S384516

    The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice

    Full text link
    [EN] Marginal semi-arid forests in areas currently affected by climate change are a challenge to forest management, which has to focus on key functional traits that can effectively contribute to resistance under extreme drought. We studied the effects of thinning in a marginal forest by quantifying functional responses relating to growth, carbon and water fluxes. Two experimental plots were established, one thinned in 2012 and the other one left as a control. The environmental conditions varied substantially during the 4-year study period, although dry years predominated. There were signs of dieback in the control with a decreasing inter-annual trend in LAI, as opposed to the treated plots, where LAI by the end of the study almost reached pre-thinning levels. Sap flow and transpiration were greatly enhanced by the treatment, with thinned trees transpiring 22.41 tree(-1) day(-1) in the growing season, about twice the control figures. The seasonal patterns of transpiration and soil moisture were uncoupled, indicating a contribution of deep groundwater to the former flux. In the control, limitations to water and carbon dynamics (canopy conductance) occurred at soil moisture values below 16%, whereas in the thinned trees these limitations appeared when soil moisture dropped below 10%. Overall, oaks' transpiration was enhanced with thinning to the point that stand-water use surpassed that of the control by the second half of the study period, averaging 24% of gross rainfall in both plots. Soil evaporation increased from 12 to 20% of gross rainfall after treatment in the overall period. The treatment had a profound watering effect in this marginal forest, led by fewer trees using the same amount of water as those in the untreated overstocked plot. This research may provide guidelines for ecohydrology-oriented silviculture in stands experiencing tree encroachment and transformation into shrublands that are more prone to global change-induced disturbances.This study is a component of the research projects HYDROSIL (CGL2011-28776-C02-02), SILWAMED (CGL2014-58127-C3-2) and CEHYRFO-MED (CGL2017-86839-C3-2-R), funded by the Spanish Ministry of Science and Innovation and the FEDER fund of the EU. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana) and ACCIONA for their support in allowing the use of the experimental forest La Hunde and for their assistance in the fieldwork.Campo García, ADD.; González Sanchís, MDC.; Garcia-Prats, A.; Ceacero Ruiz, CJ.; Lull, C. (2019). The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agricultural and Forest Meteorology. 264:266-282. https://doi.org/10.1016/j.agrformet.2018.10.016S26628226

    Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments

    Full text link
    [EN] Water-oriented forest management is an urgent need in semiarid catchments. In the case of low-biomass forests and shrublands, the magnitude, efficiency and temporal duration of thinning effects on rainfall partitioning needs further attention. This work studies the effects of juvenile thinning and shrub clearing on stemflow (Stf), throughfall (Thr) and interception (It) in two low-biomass forests (CAL: post-fire Aleppo pine saplings with 74% of basal area, BA, removed; and HU: evergreen oak coppice with 41% of BA removed), as well as the relative contribution of the event meteorology. The effects are compared with a control plot during the first 3¿4¿years. Stf rate (%) decreased with density and, on a tree scale, it was enhanced by the treatment only in the bigger oaks. Event Thr increased from 55 to 81% and from 68 to 86% of gross rainfall (Pg) for CAL and HU respectively after thinning, resulting in about 15% less intercepted Pg. High evaporative conditions and an open (ventilated) forest structure led to high It rates in the controls when comparing with other studies, thus making the treatments more efficient in net precipitation (Pn) gain (Pg intercepted decreased 17% or 2.3% per unit of LAI or BA removed respectively). In general, depths (mm) were mostly explained (>75%) by the rainfall characteristics of the event (e.g. amount, duration, intensity), with a limited contribution from forest structure (e.g. cover, LAI) and event meteorology (e.g. temperature, wind speed, vapor pressure deficit). On the contrary, when expressed as rates (% of Pg), forest structure and event-meteorology gained importance (explaining 25¿65%), especially in the drier site (CAL). In this site, the low gain in Pn (~25¿mm per year on average) was offset with no temporal dampening during the span of this study, as observed in the wetter site (HU), where plant growth tended to mitigate the effect of the treatment by the end of the study. The results presented here make a contribution to a better understanding of the effects of water-oriented forest management in low-biomass semiarid forests.This study is a component of research projects: HYDROSIL (CGL2011-28776-C02-02), SILWAMED (CGL2014-58127-C3-2) and CEHYRFO-MED (CGL2017-86839-C3-2-R) funded by the Spanish Ministry of Science and Innovation and the FEDER fund of the EU. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana), Serra municipality, VAERSA and ACCIONA for their support in allowing the use of the experimental forest and for their assistance in carrying out the fieldwork.Campo García, ADD.; González Sanchís, MDC.; Lidón, A.; Ceacero Ruiz, CJ.; Garcia-Prats, A. (2018). Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. Journal of Hydrology. 565:74-86. https://doi.org/10.1016/j.jhydrol.2018.08.013S748656

    Structuring Climate Service Co-Creation Using a Business Model Approach

    Full text link
    [EN] Climate services are tools or products that aim to support climate-informed decision making for the adaptation to climate change. The market for climate services is dominated by public institutions, despite the efforts made by the European Commission to increase private enterprise in the market. The business model perspective has been proposed as a framework for enabling market growth through the development of appropriate business models for the provision of climate services. However, there is a lack of structured knowledge on how to approach climate service design and development from a business model standpoint. In this contribution, we first analyze the role of stakeholders in the design and development of climate services and identify opportunities for engaging users in the creation process. Afterwards, we explain our approach to climate service design and development using a business model perspective. To illustrate the proposed approach, we describe the co-creation of a climate service to support the adaptation to climate change of the urban water supply system in Valencia, Spain, and discuss the main findings and lessons learned from applying this approach.We acknowledge the European Research Area for Climate Services consortium (ER4CS) and the Agencia Estatal de Investigacion for their financial support to this research under the INNOVA project (Grant Agreement: 690462; PCIN-2017-066). This study has also been partially funded by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion y Universidades (MICIU) of Spain.Rubio-Martín, A.; Máñez-Costa, M.; Pulido-Velazquez, M.; Garcia-Prats, A.; Celliers, L.; Llario, F.; Macián Cervera, VJ. (2021). Structuring Climate Service Co-Creation Using a Business Model Approach. Earth's Future. 9(10):1-18. https://doi.org/10.1029/2021EF002181S11891
    corecore