248 research outputs found

    A Bitter Pill: The Primordial Lithium Problem Worsens

    Full text link
    The lithium problem arises from the significant discrepancy between the primordial 7Li abundance as predicted by BBN theory and the WMAP baryon density, and the pre-Galactic lithium abundance inferred from observations of metal-poor (Population II) stars. This problem has loomed for the past decade, with a persistent discrepancy of a factor of 2--3 in 7Li/H. Recent developments have sharpened all aspects of the Li problem. Namely: (1) BBN theory predictions have sharpened due to new nuclear data, particularly the uncertainty on 3He(alpha,gamma)7Be, has reduced to 7.4%, and with a central value shift of ~ +0.04 keV barn. (2) The WMAP 5-year data now yields a cosmic baryon density with an uncertainty reduced to 2.7%. (3) Observations of metal-poor stars have tested for systematic effects, and have reaped new lithium isotopic data. With these, we now find that the BBN+WMAP predicts 7Li/H = (5.24+0.71-0.67) 10^{-10}. The Li problem remains and indeed is exacerbated; the discrepancy is now a factor 2.4--4.3 or 4.2sigma (from globular cluster stars) to 5.3sigma (from halo field stars). Possible resolutions to the lithium problem are briefly reviewed, and key nuclear, particle, and astronomical measurements highlighted.Comment: 21 pages, 4 figures. Comments welcom

    Bridging flavour violation and leptogenesis in SU(3) family models

    Full text link
    We reconsider basic, in the sense of minimal field content, Pati-Salam x SU(3) family models which make use of the Type I see-saw mechanism to reproduce the observed mixing and mass spectrum in the neutrino sector. The goal of this is to achieve the observed baryon asymmetry through the thermal decay of the lightest right-handed neutrino and at the same time to be consistent with the expected experimental lepton flavour violation sensitivity. This kind of models have been previously considered but it was not possible to achieve a compatibility among all of the ingredients mentioned above. We describe then how different SU(3) messengers, the heavy fields that decouple and produce the right form of the Yukawa couplings together with the scalars breaking the SU(3) symmetry, can lead to different Yukawa couplings. This in turn implies different consequences for flavour violation couplings and conditions for realizing the right amount of baryon asymmetry through the decay of the lightest right-handed neutrino. Also a highlight of the present work is a new fit of the Yukawa textures traditionally embedded in SU(3) family models.Comment: 26 pages, 5 figures, Some typos correcte

    Leptogenesis and low energy observables in left-right symmetric models

    Get PDF
    In the context of left-right symmetric models we study the connection of leptogenesis and low energy parameters such as neutrinoless double beta decay and leptonic CP violation. Upon imposition of a unitarity constraint, the neutrino parameters are significantly restricted and the Majorana phases are determined within a narrow range, depending on the kind of solar solution. One of the Majorana phases gets determined to a good accuracy and thereby the second phase can be probed from the results of neutrinoless double beta decay experiments. We examine the contributions of the solar and atmospheric mass squared differences to the asymmetry and find that in general the solar scale dominates. In order to let the atmospheric scale dominate, some finetuning between one of the Majorana phases and the Dirac CP phase is required. In this case, one of the Majorana phases is determined by the amount of CP violation in oscillation experiments.Comment: 18 pages, 6 figures. Matches version to appear in PR

    Detection Limits for Super-Hubble Suppression of Causal Fluctuations

    Full text link
    We investigate to what extent future microwave background experiments might be able to detect a suppression of fluctuation power on large scales in flat and open universe models. Such suppression would arise if fluctuations are generated by causal processes, and a measurement of a small suppression scale would be problematic for inflation models, but consistent with many defect models. More speculatively, a measurement of a suppression scale of the order of the present Hubble radius could provide independent evidence for a fine-tuned inflation model leading to a low-density universe. We find that, depending on the primordial power spectrum, a suppression scale modestly larger than the visible Horizon can be detected, but that the detectability drops very rapidly with increasing scale. For models with two periods of inflation, there is essentially no possibility of detecting a causal suppression scale.Comment: 8 pages, 4 figures, revtex, In Press Physical Review D 200

    Turbulent Thermalization

    Full text link
    We study, analytically and with lattice simulations, the decay of coherent field oscillations and the subsequent thermalization of the resulting stochastic classical wave-field. The problem of reheating of the Universe after inflation constitutes our prime motivation and application of the results. We identify three different stages of these processes. During the initial stage of ``parametric resonance'', only a small fraction of the initial inflaton energy is transferred to fluctuations in the physically relevant case of sufficiently large couplings. A major fraction is transfered in the prompt regime of driven turbulence. The subsequent long stage of thermalization classifies as free turbulence. During the turbulent stages, the evolution of particle distribution functions is self-similar. We show that wave kinetic theory successfully describes the late stages of our lattice calculation. Our analytical results are general and give estimates of reheating time and temperature in terms of coupling constants and initial inflaton amplitude.Comment: 27 pages, 13 figure

    Neutrino Oscillations and the Early Universe

    Full text link
    The observational and theoretical status of neutrino oscillations in connection with solar and atmospheric neutrino anomalies is presented in brief. The effect of neutrino oscillations on the early Universe evolution is discussed in detail. A short review is given of the standard Big Bang Nucleosynthesis and the influence of resonant and nonresonant neutrino oscillations on active neutrinos and on primordial nucleosynthesis of He-4. BBN cosmological constraints on neutrino oscillation parameters are discussed.Comment: 21 p., 6 figures, a review based on raview talk at NCYA Conference and a presentation at CAPP200

    Leptogenesis from a sneutrino condensate revisited

    Full text link
    We re--examine leptogenesis from a right--handed sneutrino condensate, paying special attention to the B−B-term associated with the see--saw Majorana mass. This term generates a lepton asymmetry in the condensate whose time average vanishes. However, a net asymmetry will result if the sneutrino lifetime is not much longer than the period of oscillations. Supersymmetry breaking by thermal effects then yields a lepton asymmetry in the standard model sector after the condensate decays. We explore different possibilities by taking account of both the low--energy and Hubble B−B-terms. It will be shown that the desired baryon asymmetry of the Universe can be obtained for a wide range of Majorana mass.Comment: 17 revtex pages, 3 figures, 1 table. Slightly modified and references added. Final version accepted for publication in Phys. Rev.

    Leptogenesis and rescattering in supersymmetric models

    Get PDF
    The observed baryon asymmetry of the Universe can be due to the B−LB-L violating decay of heavy right handed (s)neutrinos. The amount of the asymmetry depends crucially on their number density. If the (s)neutrinos are generated thermally, in supersymmetric models there is limited parameter space leading to enough baryons. For this reason, several alternative mechanisms have been proposed. We discuss the nonperturbative production of sneutrino quanta by a direct coupling to the inflaton. This production dominates over the corresponding creation of neutrinos, and it can easily (i.e. even for a rather small inflaton-sneutrino coupling) lead to a sufficient baryon asymmetry. We then study the amplification of MSSM degrees of freedom, via their coupling to the sneutrinos, during the rescattering phase which follows the nonperturbative production. This process, which mainly influences the (MSSM) D−D-flat directions, is very efficient as long as the sneutrinos quanta are in the relativistic regime. The rapid amplification of the light degrees of freedom may potentially lead to a gravitino problem. We estimate the gravitino production by means of a perturbative calculation, discussing the regime in which we expect it to be reliable.Comment: (20 pages, 6 figures), references added, typos corrected. Final version in revte

    Leptonic Dirac CP Violation Predictions from Residual Discrete Symmetries

    Get PDF
    Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton) flavour symmetry, corresponding to a non-Abelian discrete symmetry group Gf, and that Gf is broken to specific residual symmetries Ge and G\u3bd of the charged lepton and neutrino mass terms, we derive sum rules for the cosine of the Dirac phase \u3b4 of the neutrino mixing matrix U. The residual symmetries considered are: i) Ge=Z2 and G\u3bd=Zn, n>2 or Zn 7Zm, n, m 652; ii) Ge=Zn, n>2 or Zn 7Zm, n, m 652 and G\u3bd=Z2; iii) Ge=Z2 and G\u3bd=Z2; iv) Ge is fully broken and G\u3bd=Zn, n>2 or Zn 7Zm, n, m 652; and v) Ge=Zn, n>2 or Zn 7Zm, n, m 652 and G\u3bd is fully broken. For given Ge and G\u3bd, the sum rules for cos \u3b4 thus derived are exact, within the approach employed, and are valid, in particular, for any Gf containing Ge and G\u3bd as subgroups. We identify the cases when the value of cos \u3b4 cannot be determined, or cannot be uniquely determined, without making additional assumptions on unconstrained parameters. In a large class of cases considered the value of cos \u3b4 can be unambiguously predicted once the flavour symmetry Gf is fixed. We present predictions for cos \u3b4 in these cases for the flavour symmetry groups Gf=S4, A4, T' and A5, requiring that the measured values of the 3-neutrino mixing parameters sin2\u3b812, sin2\u3b813 and sin2\u3b823, taking into account their respective 3\u3c3 uncertainties, are successfully reproduced. \ua9 2015 The Authors
    • …
    corecore