5,168 research outputs found

    Hispanos no Sul de França.

    Get PDF
    65 (3-4) Jul.-Dez. 1955, p. 331-340

    Os mais primitivos nomes da Península Hispânica.

    Get PDF
    56 (3-4) Jul.-Dez. 1946, p. 227-250

    O Problema dos enterramentos na cultura castreja.

    Get PDF
    76 (1-2) Jan.-Jun. 1966, p. 5-24

    Orígines de la casa redonda de la cultura castreña del N. O. de la Peninsula.

    Get PDF
    81 (1-2) Jan.-Jun. 1971, p. 25-35

    El Castro de Coaña (Asturias) y algunas notas sobre el posible origen de esta cultura.

    Get PDF
    50 (3-4) Jul.-Dez. 1940, p. 284-311

    Uncertainties of predictions in models of eternal inflation

    Get PDF
    In a previous paper \cite{MakingPredictions}, a method of comparing the volumes of thermalized regions in eternally inflating universe was introduced. In this paper, we investigate the dependence of the results obtained through that method on the choice of the time variable and factor ordering in the diffusion equation that describes the evolution of eternally inflating universes. It is shown, both analytically and numerically, that the variation of the results due to factor ordering ambiguity inherent in the model is of the same order as their variation due to the choice of the time variable. Therefore, the results are, within their accuracy, free of the spurious dependence on the time parametrization.Comment: 30 pages, RevTeX, figure included, added some references and Comments on recent proposal (gr-qc/9511058) of alternative regularization schemes, to appear in Phys. Rev.

    Corrections to the apparent value of the cosmological constant due to local inhomogeneities

    Full text link
    Supernovae observations strongly support the presence of a cosmological constant, but its value, which we will call apparent, is normally determined assuming that the Universe can be accurately described by a homogeneous model. Even in the presence of a cosmological constant we cannot exclude nevertheless the presence of a small local inhomogeneity which could affect the apparent value of the cosmological constant. Neglecting the presence of the inhomogeneity can in fact introduce a systematic misinterpretation of cosmological data, leading to the distinction between an apparent and true value of the cosmological constant. We establish the theoretical framework to calculate the corrections to the apparent value of the cosmological constant by modeling the local inhomogeneity with a ΛLTB\Lambda LTB solution. Our assumption to be at the center of a spherically symmetric inhomogeneous matter distribution correspond to effectively calculate the monopole contribution of the large scale inhomogeneities surrounding us, which we expect to be the dominant one, because of other observations supporting a high level of isotropy of the Universe around us. By performing a local Taylor expansion we analyze the number of independent degrees of freedom which determine the local shape of the inhomogeneity, and consider the issue of central smoothness, showing how the same correction can correspond to different inhomogeneity profiles. Contrary to previous attempts to fit data using large void models our approach is quite general. The correction to the apparent value of the cosmological constant is in fact present for local inhomogeneities of any size, and should always be taken appropriately into account both theoretically and observationally.Comment: 16 pages,new sections added analyzing central smoothness and accuracy of the Taylor expansion approach, Accepted for publication by JCAP. An essay based on this paper received honorable mention in the 2011 Essay Context of the Gravity Research Foundatio

    Chaotic behavior in a Z_2 x Z_2 field theory

    Full text link
    We investigate the presence of chaos in a system of two real scalar fields with discrete Z_2 x Z_2 symmetry. The potential that identify the system is defined with a real parameter r and presents distinct features for r>0 and for r<0. For static field configurations, the system supports two topological sectors for r>0, and only one for r<0. Under the assumption of spatially homogeneous fields, the system exhibts chaotic behavior almost everywhere in parameter space. In particular a more complex dynamics appears for r>0; in this case chaos can decrease for increasing energy, a fact that is absent for r<0.Comment: Revtex, 13 pages, no figures. Version with figures in Int. J. Mod. Phys. A14 (1999) 496

    Predictability crisis in inflationary cosmology and its resolution

    Get PDF
    Models of inflationary cosmology can lead to variation of observable parameters ("constants of Nature") on extremely large scales. The question of making probabilistic predictions for today's observables in such models has been investigated in the literature. Because of the infinite thermalized volume resulting from eternal inflation, it has proven difficult to obtain a meaningful and unambiguous probability distribution for observables, in particular due to the gauge dependence. In the present paper, we further develop the gauge-invariant procedure proposed in a previous work for models with a continuous variation of "constants". The recipe uses an unbiased selection of a connected piece of the thermalized volume as sample for the probability distribution. To implement the procedure numerically, we develop two methods applicable to a reasonably wide class of models: one based on the Fokker-Planck equation of stochastic inflation, and the other based on direct simulation of inflationary spacetime. We present and compare results obtained using these methods.Comment: 23 pages, 13 figure
    • …
    corecore