55,934 research outputs found

    Burst statistics in Alcator C-Mod SOL turbulence

    Full text link
    Bursty fluctuations in the scrape-off layer (SOL) of Alcator C-Mod have been analyzed using gas puff imaging data. This reveals many of the same fluctuation properties as Langmuir probe measurements, including normal distributed fluctuations in the near SOL region while the far SOL plasma is dominated by large amplitude bursts due to radial motion of blob-like structures. Conditional averaging reveals burst wave forms with a fast rise and slow decay and exponentially distributed waiting times. Based on this, a stochastic model of burst dynamics is constructed. The model predicts that fluctuation amplitudes should follow a Gamma distribution. This is shown to be a good description of the gas puff imaging data, validating this aspect of the model.Comment: 8 pages, 6 figure

    OS diversity for intrusion tolerance: Myth or reality?

    Get PDF
    One of the key benefits of using intrusion-tolerant systems is the possibility of ensuring correct behavior in the presence of attacks and intrusions. These security gains are directly dependent on the components exhibiting failure diversity. To what extent failure diversity is observed in practical deployment depends on how diverse are the components that constitute the system. In this paper we present a study with operating systems (OS) vulnerability data from the NIST National Vulnerability Database. We have analyzed the vulnerabilities of 11 different OSes over a period of roughly 15 years, to check how many of these vulnerabilities occur in more than one OS. We found this number to be low for several combinations of OSes. Hence, our analysis provides a strong indication that building a system with diverse OSes may be a useful technique to improve its intrusion tolerance capabilities

    Single-copy entanglement in a gapped quantum spin chain

    Get PDF
    The single-copy entanglement of a given many-body system is defined [J. Eisert and M. Cramer, Phys. Rev. A. 72, 042112 (2005)] as the maximal entanglement deterministically distillable from a bipartition of a single specimen of that system. For critical (gapless) spin chains, it was recently shown that this is exactly half the von Neumann entropy [R. Orus, J. I. Latorre, J. Eisert, and M. Cramer, Phys. Rev. A 73, 060303(R) (2006)], itself defined as the entanglement distillable in the asymptotic limit: i.e. given an infinite number of copies of the system. It is an open question as to what the equivalent behaviour for gapped systems is. In this paper, I show that for the paradigmatic spin-S Affleck-Kennedy-Lieb-Tasaki chain (the archetypal gapped chain), the single-copy entanglement is equal to the von Neumann entropy: i.e. all the entanglement present may be distilled from a single specimen.Comment: Typos corrected; accepted for publication in Phys. Rev. Lett.; comments welcom

    Norm estimates of complex symmetric operators applied to quantum systems

    Full text link
    This paper communicates recent results in theory of complex symmetric operators and shows, through two non-trivial examples, their potential usefulness in the study of Schr\"odinger operators. In particular, we propose a formula for computing the norm of a compact complex symmetric operator. This observation is applied to two concrete problems related to quantum mechanical systems. First, we give sharp estimates on the exponential decay of the resolvent and the single-particle density matrix for Schr\"odinger operators with spectral gaps. Second, we provide new ways of evaluating the resolvent norm for Schr\"odinger operators appearing in the complex scaling theory of resonances
    • …
    corecore