3 research outputs found
Histidineâmediated synthesis of chiral cobalt oxide nanoparticles for enantiomeric discrimination and quantification
Chiral transition metal oxide nanoparticles (CTMOs) are attracting a lot of attention due to their fascinating properties. Nevertheless, elucidating the chirality induction mechanism often remains a major challenge. Herein, the synthesis of chiral cobalt oxide nanoparticles mediated by histidine (Co3O4@L-His and Co3O4@D-His for nanoparticles synthesized in the presence of L- and D-histidine, respectively) is investigated. Interestingly, these CTMOs exhibit remarkable and tunable chiroptical properties. Their analysis by x-ray photoelectron, Fourier transform infrared, and ultraviolet-visible absorption spectroscopy indicates that the ratio of Co2+/Co3+ and their interactions with the imidazole groups of histidine are behind their chiral properties. In addition, the use of chiral Co3O4 nanoparticles for the development of sensitive, rapid, and enantioselective circular dichroism-based sensors is demonstrated, allowing direct molecular detection and discrimination between cysteine or penicillamine enantiomers. The circular dichroism response of the chiral Co3O4 exhibits a limit of detection and discrimination of cysteine and penicillamine enantiomers as low as 10 ”m. Theoretical calculations suggest that the ligand exchange and the coexistence of both species adsorbed on the oxide surface are responsible for the enantiomeric discrimination. This research will enrich the synthetic approaches to obtain CTMOs and enable the extension of the applications and the discovery of new chiroptical properties.National Natural Science Foundation of China | Ref. 22271257Agencia Estatal de Investigación | Ref. PID2019-108954RB-I00Xunta de Galicia | Ref. ED431C 2020/09Universidade de Vigo/CISU
Bolaform surfactantâinduced Au nanoparticle assemblies for reliable solutionâbased surfaceâenhanced Raman scattering detection
Financiado para publicaciĂłn en acceso aberto: Universidade de Vigo/CISUGSolution-based surface-enhanced Raman scattering (SERS) detection typically involves the aggregation of citrate-stabilized Au nanoparticles into colloidal assemblies. Although this sensing methodology offers excellent prospects for sensitivity, portability, and speed, it is still challenging to control the assembly process by a salting-out effect, which affects the reproducibility of the assemblies and, therefore, the reliability of the analysis. This work presents an alternative approach that uses a bolaform surfactant, B20, to induce the plasmonic assembly. The decrease of the surface charge and the bridging effect, both promoted by the adsorption of B20, are hypothesized as the key points governing the assembly. Furthermore, molecular dynamic simulations supported the bridging effect of the B20 by showing the preferential bridging of surfactant monomers between two adjacent Au(111) slabs. The colloidal assemblies showed excellent SERS capabilities towards the rapid, on-site detection and quantification of beta-blockers and analgesic drugs in the nanomolar regime, with a portable Raman device. Interestingly, the application of state-of-the-art convolutional neural networks, such as ResNet, allows a 100% accuracy in classifying the concentration of different binary mixtures. Finally, the colloidal approach was successfully implemented in a millifluidic chip allowing the automation of the whole process, as well as improving the performance of the sensor in terms of speed, reliability, and reusability without affecting its sensitivity.MCIN/AEI/10.13039/501100011033 | Ref. PID2019-108954RB-I00MCIN/AEI/10.13039/501100011033 | Ref. PID2019-106960GB-I00MCIN/AEI/10.13039/501100011033 | Ref. BES-2017-08167MEC/AEI | Ref. CTQ2017-84354-PXunta de Galicia | Ref. GRC ED431C 2020/09Xunta de Galicia | Ref. GR 2007/08