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science, environmental science, or bio-
analytical science.[1–3] The SERS enhance-
ment is related to a combination of 
electromagnetic and chemical effects, 
being 1010 a reasonable maximum value 
for the enhancement factor of the Raman 
signal.[4] Considering that the electromag-
netic effect is the dominant one, the ability 
to achieve high SERS enhancements, and 
therefore high sensing capabilities, often 
relies on the plasmonic efficiency of the 
metal surface. In this regard, although dis-
crete plasmonic nano particles can obtain 
reasonable SERS enhancements, their 
assembly gives rise to higher enhance-
ment factors due to the amplification of 
the electromagnetic field confined in the 
gap between closely coupled nanoparticles 
(known as hot spots).[5] Therefore great 
effort has been devoted to designing and 
fabricating different substrates based on the 
assembly of nanoparticles for direct SERS 
sensing. Significantly, it is still challenging 
to synthesize/fabricate substrates with out-
standing sensing capabilities in terms of 
efficiency, uniformity, and reliability.[1,6,7]

The simplest approach to induce the 
assembly/aggregation of the nanoparticles is to produce its 
destabilization. For instance, the destabilization of charged 
nanoparticles dispersions, where the interparticle forces are 
dominated by the van der Waals attraction and the electrostatic 
double-layer repulsion, occurs by screening the electrostatic 
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1. Introduction

The discovery of the Surface-enhanced Raman scattering 
(SERS) effect last century paved the way for the development 
of sensing applications in different fields such as materials 
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double-layer repulsion upon increasing the ionic strength.[8] 
Over the past decades, several experimental studies have 
demonstrated that the stability-instability of nanoparticles dis-
persions can be well described with the Derjaguin, Landau, 
Verwey, and Overbeek (DLVO) theory.[8,9] Unfortunately, in 
the case of citrate-stabilized gold nanoparticles, the irrepro-
ducible performance of the aggregation process hinders its 
practical application as SERS substrate.[10] In this context, it 
is challenging to control the assembly/aggregation of citrate-
stabilized nanoparticles in a high reproducibility manner by a 
salting-out effect.[11,12]

The assembly of plasmonic nanoparticles in a fully con-
trolled manner generally requires its surface functionalization 
with ligand molecules bearing a variety of functional groups.[13] 
These terminal groups have been used to direct the reversible 
assembly of nanoparticles upon external stimuli, which can 
be chemical or physical. Unfortunately, this approach ham-
pers the control over the gap between nanoparticles with sub-
nanometric precision, which is a key issue for achieving highly 
intense and reproducible hot spots.

Alternatively, different molecules with a high affinity toward 
gold surfaces have been proposed as a trigger to induce 
aggregation. For instance, Mahajan  et  al. reported the use of 
cucurbit[n]uril macrocycles (CB[n]) to produce the controllable 

and highly reproducible aggregation of citrate-stabilized gold 
nanoparticles.[14] The CB[n] adsorption to metallic surfaces by 
electrostatic interactions triggers the formation of dynamic 
assembly of nanoparticles with a precise gap junction between 
particles.[15,16] These colloidal assemblies have demonstrated 
good capabilities for SERS sensing, not just because of the 
reproducible hot spots but also for macrocycle’s host-guest 
capabilities that allow the precise positioning of the analyte on 
the hot spot.[17,18]

Herein, we propose the use of a cationic α,ω-type(bolaform) 
surfactant, eicosane-1,20-bis(trimethylammonium) dibromide 
(B20), to induce the aggregation of citrate-stabilized Au nano-
spheres (AuSphs) to give rise to reliable plasmonic assemblies. 
We hypothesized that upon the addition of B20, the bolaform 
surfactant monomers would be readily adsorbed to gold sur-
faces through quaternary ammonium head groups decreasing 
the surface charge and promoting an interparticle bridging 
effect.[19] Next, we investigated B20-induced AuSph assemblies 
as a reliable sensing platform for SERS analysis of aqueous-
based solutions (Figure 1) employing a handheld Raman 
spectrometer. Besides, we demonstrated the versatility of this 
approach for multiplexing experiments in combination with 
deep learning techniques, such as multilayer neuronal network 
(MNN) and residual neuronal network (ResNet). Finally, we 

Figure 1. Schematic representation of the surface-enhanced Raman scattering (SERS)-based sensing approach. The bolaform surfactant, B20, induces 
the assembly of Au nanospheres (AuSphs) assembly after mixing inside a millifluidic chip. In the presence of an analyte of interest, it is trapped at 
the formed hot spots and in-situ detected via SERS analysis with a portable Raman. The SERS data is subsequently treated using principal component 
analysis (PCA) or deep learning.
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integrated the B20-induced AuSph methodology into a milliflu-
idic system to fabricate a high-performance sensing platform 
regarding reusability, reproducibility and sensitivity.

2. Results and Discussion

2.1. Bolaform Surfactant-Induced Assembly

First, we investigated the colloidal assembly of AuSphs trig-
gered by the fast addition of the cationic bolaform surfactant 
(B20). The B20 surfactant is characterized by two terminal 
quaternary ammonium surfactants that are separated by an 
aliphatic chain of 20 carbons (Scheme S1A, Supporting Infor-
mation). AuSph with an average diameter of 61.3 ± 5.5 nm.[20] 
(see Figure S1 in the Supporting Information) were selected 
as plasmonic building blocks. The citrate ions adsorbed 
on the metal surface provide AuSph colloidal stability 
through electrostatic interaction. The ζ-potential of AuSph is 
−43.2 ± 0.9 mV.

In a typical experiment, a certain amount of B20 was added
to a colloidal AuSph dispersion (0.5 mM in terms of Au0), and 
the assembly process was followed by UV-vis-NIR spectroscopy. 
Figure 2A–C and Figure S2 in the SI show the time evolution 
extinction spectra of Au colloids upon addition of different B20 
concentrations (ranging the final concentrations from 10−9 to 
10−1 m). Regardless of the amount added, the assembly pro-
cess reached equilibrium in less than 5 min (Figure S2G in 

SI). Therefore, the ζ-potential, as well as the hydrodynamic 
diameter, of the Au colloids were measured 5 min after B20 
addition (Figure  2D). Interestingly, the analysis of the data 
revealed three well-differentiated regimes as a function of the 
B20 concentration:

i) Low-concentration regime (<10−7 m) where no nanoparticle
assembly occurs. Thus, the hydrodynamic diameter of Au col-
loids (Figure 2D) and, therefore, their optical properties remain 
unaltered (Figure 2A). A slight increase of the ζ-potential from 
−43.2 mV to −30.0 mV is the only observed effect., most prob-
ably due to the adsorption of the B20 monomers.

ii) Assembly regime (10−7 – 10−4 m) where a fast AuSph
assembly process takes place within less than 5 minutes 
(Figure 2B,C and Figure S2B-E in the SI), as demonstrated by 
the decrease in the characteristic localized surface plasmon 
resonance (LSPR) band of AuSph and the appearance of a new 
band at higher wavelengths. In addition, dynamic light scat-
tering (DLS) (Figure  2D) and scanning electron microscopy 
(SEM) (Figure S3, Supporting Information) characterization 
confirmed the presence of aggregates with average hydrody-
namic diameters above 1 micrometre. Interestingly, at this 
concentration range, the analysis of ζ-potential showed values 
between −20.0 mV to +20.0 mV (Figure  2D), indicating that 
nanoparticles were below the surface charge stability regime.[21] 
Therefore, the lower surface charge, together with the bridging 
effect mediated by the B20 (with two quaternary amines 
heads), could make the AuSph prone to assemble. It should 
be pointed out that the assembly process is highly reproducible, 

Figure 2. Effect of B20 concentration on AuSph assembly. A–C) Time evolution of extinction spectra of colloidal AuSphs upon addition of different 
concentrations of B20; 10−8 m (A), 10−6 m (B), and 10−4 m (C). D) ζ-Potential and hydrodynamic diameter of AuSphs as a function of B20 concentration. 
All measurements were performed 5 min after B20 addition.
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as demonstrated by the relatively low variability of the optical 
properties of AuSph aggregates obtained from 15 independent 
experiments (see Figure S4 in the SI).

iii) High-concentration regime (>10−4 m) without AuSph
assembly. Similar to the “low-concentration regime”, the addi-
tion of B20 did not produce significant changes in the particle 
size or optical properties (and Figure 2D and Figure S2F in the 
SI, respectively). In this regime, the surface ζ-potential is above 
+20.0 mV; therefore, the fast addition of B20 gave rise to the sur-
face charge reversal at the particle surface via molecule adsorp-
tion without compromising the colloidal stability.

To summarize, upon adding B20, the monomers will adsorb 
to the nanoparticle surface, decreasing the surface charge 
slightly but enough to maintain the colloidal stability of the 
AuSphs. As the B20 concentration increases, its further absorp-
tion decreases the surface charge to values below the surface 
charge stability regime. Under these conditions, when two par-
ticles are close enough, the B20 could induce surfactant bridges 
between them mediated by the favorable interaction of its ter-
minal quaternary ammonium head groups (see Scheme S1A in 
the SI) and the nanoparticle surface. The combination of the 
surface charge decreasing within the bridging effect is hypoth-
esized as the key parameters to govern the assembly in a broad 
range of bolaform surfactant concentrations.

To shine some light on the proposed mechanism, similar 
experiments were performed with a single-headed quaternary 
ammonium surfactant with 16 carbons in the aliphatic chain, 
such as hexadecyltrimethylammonium bromide (CTAB, see 
Scheme S1B in the SI). As shown in Figure S5 in the SI, at 
low CTAB concentration (below 10−6 m), the optical proper-
ties and nanoparticle size didn’t change upon CTAB addition, 
indicating the absence of AuSph aggregation. This behaviour 
agrees with the ζ-potential of the particles, which remain above 
−30 mV at this concentration range. Nevertheless, the addition
of 1.6 × 10−6 m CTAB strongly affected the inherent nanoparticle
stability producing a strong aggregation (Figure S5A in the SI)
by lowering the AuSph surface charge to values close to zero.
Surprisingly, AuSph colloids remained fully stable for CTAB
concentrations higher than 10−5 m since the complete reversal
surface charge (>+20.0 mV) was observed. These results indi-
cated that in the case of CTAB, the AuSph colloids destabiliza-
tion occurs in a concise concentration range. In contrast, in the
case of B20, it takes place in a more controlled fashion within a 
concentration range from 10−7 – 10−4 m. Moreover, while in the 
case of CTAB the AuSph aggregation is triggered by the surface 
charge neutralization, in the case of B20 the bridging effect may 
also play a fundamental role.

2.2. Molecular Dynamics Simulations

To better understand the interaction between B20 and AuSph 
and confirm the hypothesis mentioned above, all atom mole-
cular dynamics (MD) simulations were performed. First, the 
adsorption of a single B20 molecule on an Au(111) surface was 
simulated and compared with the adsorption of a single hexa-
decyltrimethylammonium cation (CTA) (Figure S6 and see 
Section  2 in the SI for further details). Simulations showed 
that both molecules are adsorbed flat on the gold surface, 

adopting a stretched configuration where the carbon atoms 
of the hydrophilic chain accommodate approximately in the 
space between the lines of gold atoms avoiding direct con-
tact with the atoms on the surface. Interestingly, the adsorp-
tion of B20 (Eads(B20) = −154.0 kJ mol−1) is energetically more 
favorable than for CTA (Eads(CTA) = −134.0 kJ mol−1), prob-
ably due to the presence of the second ammonium head 
group in B20.

To evaluate the possibility of B20 to establish a bridging effect 
between AuSph, we built up a group of models composed of 
two Au(111) slabs separated at different distances (from 15 to 
35  Å) containing a single B20 molecule. The snapshots and 
analysis of number densities show that for distances between 
20 and 30 Å, B20 can adopt configurations contacting simulta-
neously with the separated Au slabs (Figure 3A and Figure S8 
in the SI). The contacts take place through the ammonium 
groups at the edges of the molecule. For separations between 
20 and 25 Å, even a section of the hydrophobic tail seems to 
contribute slightly to the interaction. No bridging was observed 
at short separations (<15 Å) because it requires a significant 
deformation of the alkyl chain, while at large ones (>35 Å), 
no bridging could be observed because the molecule length is 
much smaller than the distance between both metallic surfaces 
(the N-N distance in a stretched ideal hydrocarbon chain of 
B20 is approximately 27 Å) (see Figure S8 in the SI). It must be 
noted here that the same MD simulations indicated above were 
performed for models containing the CTA species. Analysis of 
the MD production runs shows that these systems always equil-
ibrate with the CTA molecule adsorbed on one of the metal 
slabs. Even at the shortest separation, no bridges were observed 
in those simulations. This finding reinforces the idea of the 
importance of both ammonium groups to make possible the 
formation of bridges between the metal slabs. Additional simu-
lations performed with more B20 units (between 5 and 15) con-
firm that some B20 molecules tend to be interacting between 
both metallic slabs at distances between 20 and 25 Å. However, 
the number of bridges is limited because the quaternary ammo-
nium heads groups must be accommodated between other B20 
molecules with their alkyl chains adsorbed on the gold surface 
(Figure 3B and Figure S9–11 in the SI). On the other hand, MD 
runs with even more B20 units (25 to 50) show a predominance 
of B20 aggregation or formation of superposed layers on the 
surfaces (Figure S12 in the SI). From all of the above, it can be 
concluded that, on very dilute systems where most of the B20 
molecules are mainly adsorbed on the metallic surface, some 
B20 molecules can adopt configurations that provide a bridging 
union between the metallic nanoparticles.

2.3. SERS Performance of B20-Induced AuSph Assemblies

So far, the results for the B20-induced AuSph assembly (noted 
as B20-AuSph) showed that the process was highly reproducible 
and that the B20-AuSph presented relatively long-term stability. 
Both features were identified as critical points for high-per-
formance colloidal SERS sensor fabrication. Therefore, this 
system (B20-AuSph) was investigated for the development of a 
portable SERS approach for rapid sensing and quantification 
of drugs in aqueous solutions with a compact Raman device.

Adv. Mater. Technol. 2022, 7, 2101726
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Taking crystal violet (CV) as Raman target analyte (the 
characteristic Raman peaks and its assignation are shown 
in Figure S13 and Table S3 in the SI), we analyzed the SERS 
efficiency of the B20-AuSph using a portable Raman spectro-
photometer. First, time-resolved SERS analysis of the AuSph 
assembly process was performed to optimize the measure-
ment conditions and get the highest SERS efficiency. For this 
purpose, different amounts of B20 were added to an aqueous 
solution containing AuSphs (0.5 mM in terms of Au0) and 
CV (10−6 m). Thus, a B20 concentration range from 10−8 to  
5  10−4  m was tested. The corresponding time-resolved SERS 
analysis performed with a portable Raman equipped with a 
785  nm laser is shown in Figure S14 in the SI. The kinetic 
analysis showed that upon the addition of B20, the SERS signal 
increases exponentially during the first minute till reaching a 
plateau in less than 5 min (Figure S14E, SI). As expected, the 
highest SERS signals were achieved for the B20 concentrations 
(10−6 to 10−4 m) (Figure S14F, SI) that triggered the AuSph 
assembly (Figure 2 and Figure S2 in the SI). Interestingly, the 
best SERS signal was obtained for a B20 concentration of 10−6 m,  
although the extension of the assembly was similar for 10−5 m.  
This result could be ascribed to the available surface in 
the B20-AuSph assemblies since the presence of a higher 

concentration of B20 could prevent analytes from adsorbing at 
the formed hot spot. Finally, the SERS time-resolved analysis 
also indicated the long-term stability of the AuSph assemblies 
since the maximum SERS signal remained constant even 
10  min after the B20 addition. Based on these results, SERS 
analysis was always performed 5 min after adding a B20 con-
centration of 10−6 m.

Next, we evaluated the limit of detection (LOD) of CV with 
the colloidal B20-AuSph sensing platform. Therefore, AuSph 
assembly was performed by adding B20 (10−6 m) to AuSph 
colloids containing different CV concentrations (10−6 to 10−10 m).  
The SERS analysis of the samples 5 min after the B20 addition 
showed that the characteristic signals of CV were distinguish-
able up to concentrations as low as 1 nm (Figure 4A). How-
ever, other signals corresponding to AuSph nanoparticles were 
also evidenced, which could interfere with analyte detection at 
low concentrations. Therefore, to perform a more robust data  
analysis for the accurate identification and quantification of the 
analyte, we performed PCA to the data set.[22] PCA transforms 
the data set, x, onto a new coordinate system, xn, where the 
greatest variance by any data projection lies on the first prin-
cipal component, the second greatest variance on the second 
coordinate, and so on.

Figure 3. MD simulations were performed for two Au slabs containing B20 molecules. A,B) Snapshots of the resulting MD simulation containing 1 (A) 
and 10 (B) B20 units in aqueous solution located between two Au(111) slabs separated at different distances, as indicated. The B20 molecules forming 
bridges between Au surfaces are highlighted in orange. Green spheres are chloride counteranions added to the solution to assure electroneutrality. 
Water molecules are not shown for clarity.
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x xn= ∑ (1)

This new coordinate system is decomposed into two sets of 
matrices as follows

x s Li i i= (2)

where si is the score (the weight associated with each spec-
trum) and Li is the loading (a set of spectral components). 

The great advantage of applying PCA to our system is that the 
loading of each component might be related to the isolated 
SERS signals of the different molecules contributing to the 
total spectrum. Figure 4B shows the loadings of the first three  
components (L1, L2, and L3) obtained via PCA analysis of the 
data set from Figure  4A. L1 represents the most remarkable 
similarities among the entire data set; as shown in Figure 4B 
(upper panel), L1 resembles the SERS spectrum of samples. 
The SERS spectrum of AuSph containing 10−6 m B20 and 10−6 m  

Figure 4. PCA analysis of the surface-enhanced Raman scattering (SERS) detection of crystal violet (CV). A) SERS spectra obtained for different CV 
concentrations ranging from 10−10 m to 10−6 m. The spectra were acquired with a time of acquisition of 30 s and a laser power of 257 mW. B) Principal 
component analysis (PCA) loading plots of the first three principal components (L1, L2, and L3) as indicated. The SERS spectra of B20-AuSph dispersion 
with and without CV (SERS CV and background, respectively) and the Raman spectrum of CV were included for better comparison. C) Isolated-SERS 
signal of CV for different molecule concentrations (10−10 m to 10−6 m) obtained from the product of scores by loading of the second component (s2 × 
L2). D) Plot of s2 as a function of the CV concentration. The error bars represent the standard deviation from three independent experiments. The 
dashed line represents the fit to a Langmuir-Hill isotherm model.
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CV was included in Figure  4B (top) for better comparison. 
Besides, L2 (Figure  4B (center)) could be assigned with the 
CV since the L2 plot showed remarkable similarities with the 
Raman spectrum of CV (also included in the graph). There-
fore, the second principal component could be used for the 
detection/identification of the molecule of interest. In fact, 
calculating the product s2 × L2 from the PCA analysis of the 
data set from Figure  4A could reconstruct the concentra-
tion-dependent relationship of the SERS spectrum of CV 
(Figure  4C). Figure  4D shows s2 values as a function of CV 
concentration. These data fitted very well to a Langmuir-Hill 
isotherm,

· analyte

analyte
2s A

B A

k

n

n n

[ ]
[ ]

( )
= +

−
+

(3)

where A and B are constants representing the start and end 
value of the data set, respectively, k is the dissociation constant, n 
is the Hill coefficient, and [analyte] is the analyte concentration.

The good fitting of the experimental data to Equation  (3) 
indicated the possibility of performing quantification analysis 
in a relatively wide CV concentration range. Finally, the LOD 
was estimated following the IUPAC recommendations, multi-
plying by three the standard deviation obtained from 10 inde-
pendent measures of the blank and interpolating the value in 
the Langmuir-Hill Equation.[23] The obtained LOD value was 
1.23 × 10−8 m.

2.4. SERS Detection of Drugs

To confirm the versatility of the proposed approach, the 
SERS-based sensing capabilities of the B20-AuSph were evalu-
ated for a range of different drugs. Thus, two beta-blocker drugs 
(propranolol and atenolol) and four analgesics (benzocaine, 
ibuprofen, acetylsalicylic acid, and acetaminophen) were 
selected (Figure  S15–S20 and Tables S4–S9 in the SI contains 
the characteristics Raman peaks and its assignation for each 
molecule). For each drug, SERS sensing experiments similar 

Figure 5. Relation between second component score (s2) and drug concentration. A–F) Representation s2 as a function of the drug concentration: 
Propranolol (A), atenolol (B), benzocaine (C), ibuprofen (D), acetylsalicylic acid (E), and acetaminophen (F). The error bars represent the standard 
deviation from three independent experiments. The dashed line represents the best fit to a Langmuir-Hill isotherm model.
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to those for CV were performed for concentrations ranging  
from 10−10 to 10−4 m. Figure S21 in the SI shows the SERS 
spectra recorded for the different drugs. Like for CV, L2 and 
s2 were obtained through PCA analysis for the drug sensing 
(Figures  S22 and S23 in the SI). Subsequently, the s2 values 
were plotted versus the concentration for each drug and fitted 
to the Langmuir-Hill isotherm (Equation  (3)). As shown in 
Figure 5, the experimental data fit very well regardless of the 
drug, obtaining n and k (Table 1). The values of k varied from 
8.45 × 10−8 for benzocaine to 4.59 × 10−4 for acetylsalicylic acid. 
The relatively large variation in this constant could be ascribed 
to the differences in drug solubilities and the drug-gold interac-
tion. Additionally, the LOD of each drug was estimated by inter-
polating in the Langmuir-Hill fitting the value of three times 
the standard deviation averaged from 10 independent meas-
urements of the blank (Table 1).[23] Interestingly, the estimated 
LOD for the two beta-blocker drugs, propranolol, and atenolol 
(1.5 × 10−8 and 4.70 × 10−7 m, respectively) were comparable 
with the best LODs reported in the literature for SERS-based 
measurements (see Table 2). In the case of the analgesics, the 
LODs were similar to others previously reported or even better. 
For instance, LOD for benzocaine was 1.32 × 10−10 m, the lower 
value reported for SERS-based measurements to the best of our 
knowledge. Still, it should be pointed out that in most of the 
previously published works, a more complex SERS substrate 
was proposed, or even a pretreatment or extraction process of 
the analyte was required. Finally, it must be highlighted that a 
linear range in a relevant concentration range was observed for 
all the studied drugs, indicating the possibility of performing 
quantitative analysis.

2.5. Multiplexed Detection Using Deep Learning

Ralbosvky and Lednev,[38] in a comprehensive review, exposed 
that chemometrics techniques using artificial intelligence are 
gaining prominence in recent years and, when combined with 
Raman spectroscopy, become a powerful method for diagnos-
tics and sensing. These promising new methods are based on 
deep learning architectures, where Convolutional Neural Net-
works (CNNs) stand out in a range of computer vision tasks. 
ResNets[39] are state-of-the-art CNNs that show better results 
in training convergence and classification stability of Raman 
spectra[40] due to their architecture allowing to build deeper 

networks. ResNets have been recently used for pathogen identi-
fication and antibiotic susceptibility testing,[41] brain tumor clas-
sification,[42] or component identification in Raman spectra of 
mixtures.[43]

Next, we investigated if our SERS sensing platform could 
identify a binary mixture of two analytes when combined with 
deep learning tools. We chose a mixture of ibuprofen and ben-
zocaine in water as a model system. Thus, different mixtures 
of the two analgesics (expressed in terms of the percentage 
concentration of ibuprofen with respect to the total analgesic 
concentration) were prepared, keeping the total analgesic con-
centration to 10−6 m. Figure S24, SI, shows the SERS spectra 
of the different ibuprofen-benzocaine mixtures. Two different 
models were employed: MNN and ResNet. The data set cor-
responding to each ibuprofen-benzocaine mixture was sepa-
rately used to train and test both deep learning models. For the 

Table 1. Obtained Langmuir-Hill coefficients and limit of detection for 
the different analytes.

Analyte Langmuir-Hill coefficients LOD [M]

K n R2

Crystal violet (9.6 ± 1.6) × 10−8 1.23 ± 0.16 0.99831 1.23 × 10−8 m

Propranolol (22.1 ± 0.8) × 10−8 1.06 ± 0.04 0.99923 1.51 × 10−8 m

Atenolol (3.3 ± 0.5) × 10−6 1.59 ± 0.20 0.99570 4.70 × 10−7 m

Benzocaine (8.5 ± 3.8) × 10−8 0.31 ± 0.05 0.99404 1.32 × 10−10 m

Ibuprofen (3.6 ± 0.6) × 10−6 1.08 ± 0.14 0.99264 5.65 × 10−7 m

Acetylsalicylic acid (4.6 ± 2.4) × 10−5 0.50 ± 0.09 0.99652 4.38 × 10−7 m

Acetaminophen (2.2 ± 0.2) × 10−5 1.85 ± 0.32 0.99652 6.94 × 10−6 m

Table 2. Limit of detection reported for the different drugs employing SERS.

Analyte Sensing platform LOD Ref

Crystal violet B20-AuSph 1.23 × 10−8 m This work

Ordered Au nanorods arrays 5 × 10−9 m [24]

AuSph printed on chromatographic 
paper

1 × 10−10 m [25]

Octahedral Au NPsupercrystal 1 × 10−19 m [26]

Propranolol B20-AuSph 1.51 × 10−8 m This work

Aggregated Ag nanoparticles 7.79 × 10−9 m [27]

Sandwich nanostructure of GO/
MIPs hybrids and Ag NPs

1 × 10−11 m [28]

Atenolol B20-AuSph 4.70 × 10−7 m This work

3D network of meso-Au NPs 3.4 × 10−8 m [29]

Ag colloids combined with solvent 
micro-extraction

0.1 µg mg−1 [30]

Ag NPs 8.9 × 10−6 m [31]

Benzocaine B20-AuSph 1.32 × 10−10 m This work

Superlattice array of plasmonic 
nanocubes

6.05 × 10−7 m [32]

AuSph film over 107nm polystyrene 
spheres

4.3 × 10−7 m [33]

Ibuprofen B20-AuSph 5.65 × 10−7 m This work

Lipophilic multibranched Au NPs 1 × 10−8 m [34]

Superlattice array of plasmonic 
nanocubes

4.85 × 10−5 m [32]

β-cyclodextrin stabilized Ag NPs 1 × 10−4 m [35]

Acetylsalicylic acid B20-AuSph 4.38 × 10−7 m This work

3D network of meso-Au NPs 2.8 × 10−6 m [29]

Superlattice array of plasmonic 
nanocubes

5.55 × 10−5 m [32]

Ag substrate laser-induced 1.77 × 10−7 m [36]

Acetaminophen B20-AuSph 6.94 × 10−6 m This work

Superlattice array of plasmonic 
nanocubes

6.62 × 10−5 m [32]

Au NPs on an anodic aluminium 
oxide filter

1 × 10−5 m [37]
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training process, 70% of the data set, randomly chosen, was 
used (see experimental section and Section 4 in the SI for fur-
ther details). The test phase was performed by introducing the 
remaining 30% of the data set as inputs to check if the models 
could predict the composition of the corresponding mixture. 
Thus, we found out that the MNN, composed of 14 dense layers, 
wasn’t powerful enough since it showed 72.2% prediction accu-
racy (see confusion matrix in Figure 6A). A ResNet model con-
sisting of 5 residual blocks was employed to improve these 
results. This convolutional neural network performed various 
operations such as Convolutions, Max-pooling, ReLU, and 
Batch-normalization (see experimental information for further 
details) to find unique patterns for each ibuprofen-benzocaine 
mixture. After performing the training process, similar to the 
MNN model, the test phase revealed that the ResNet model was 
able to predict the composition of the mixture with 100% accu-
racy (Figure 6B). An extensive description of the data visualiza-
tion, pre-processing, model building, and evaluation of model 
loss and accuracy are described in the experimental section.

2.6. Millifluidic SERS Sensing

The excellent sensing capabilities of the B20-AuSph motivated us 
to investigate the possibility of integrating this sensing platform 
within a polydimethylsiloxane (PDMS) millifluidic chip. There-
fore, a PDMS chip was designed with two inlets converging in 
a pre-mixer Y-shaped connection, a sinusoidal type mixer, and a 
measuring chamber (see Figure 7A).[44,45] The dimensions of the 
millifluidic channel were 1 × 1 mm2 in cross-section and ≈8 cm in 
length; while the measuring chamber was 2 × 2 × 1 mm3 (length 
× width × height); therefore, the total volume was ca  100  µL.
Interestingly, the template used for the chip fabrication was
printed in a 3D printer employing ABS polymer with a cost of
≈0.3 $, and it was replicated in a PDMS slab (6 × 3 × 0.5 cm3,
length × width × height, and ≈10 g) by less than 1 $ per chip.

First, we studied the B20-AuSph in the PDMS millifluidic 
chip. To test the reproducibility, we performed 15 different 

experiments, and the resulting B20-AuSph were evaluated 
by UV-vis-NIR spectroscopy. As shown in Figure S27 in the 
SI, using a millifluidic chip gave rise to highly uniform B20-
AuSph (as revealed the low variability of the optical proper-
ties), improving the reproducibility achieved in a cuvette 

Figure 6. Confusion matrices show the prediction percentage of different ibuprofen-benzocaine mixtures. A) MNN and B) ResNet deep learning 
architectures were applied to classify the percentage of Ibuprofen in the analgesic mixture. The total concentration of analgesics in the mixtures was 
10−6 M, and they were expressed in terms of the percentage concentration of ibuprofen with respect to the total analgesic concentration. At least ten 
different samples of each molar ratio were predicted.

Figure 7. B20-AuSph millifluidic chip for SERS sensing of propranolol. 
A) Schematic illustration of the millifluidic chip to perform B20-AuSph 
based sensing. B) Representation of s2 as a function of the concentration 
of propranolol for experiments performed in a cuvette (red) and in a mil-
lifluidic chip (blue).
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(Figure S5 in the SI). Interestingly, the higher extinction ratio 
Ext780/Ext540 obtained in a millifluidic chip (Figure S25C, SI)  
indicated a higher density of hot spots than that obtained in a 
cuvette. Additionally, the AuSph assembly kinetic performed in 
a millifluidic chip is faster than in the case of a cuvette. While the 
equilibrium of the AuSph assembly was reached in less ≈5 min  
for cuvette experiments (Figure S2G, SI), it was ≈10 s (for a flow 
rate of ≈5 µL s−1) in the millifluidic chip.

Next, we evaluated the efficiency of this millifluidic sensing 
platform by performing SERS experiments with propranolol for 
concentrations ranging from 10−10 to 10−4 m, and we compared 
the results with those obtained previously in a cuvette. Figure S28 
in the SI shows representative SERS spectra recorded for the 
different propranolol concentrations. Like in the previous case 
performed in a cuvette, s2 was obtained through PCA analysis 
and plotted versus the propranolol concentration. Figure  7B 
shows the s2 plots corresponding to millifluidic and cuvette 
platforms and their corresponding fittings to the Langmuir-
Hill isotherm (Equation (3)). The experimental data fitted very 
well in both platforms, achieving similar LODs (1.06 × 10−8 m  
vs 1.24 × 10−8 m for cuvette and millifluidic chip, respectively). 
Although no improvement in the LOD was observed using the 
millifluidic platform, this result demonstrated the practical 
applicability of the chip to induce the bolaform surfactant-pro-
moted AuSph assembly without losing any SERS capabilities.

Finally, we study the reusability of the millifluidic PDMS 
chip by performing multiple successive experiments and ana-
lyzing the background signal after each of them. It is essential 
to highlight that this analysis is very dependent on the concen-
tration of the analyte employed. For this reason, we decided to 
use the highest concentration in the linear range of propran-
olol, 10−5 m. After each measure, the chip was washed with  
2 mL of 10 mm CTAB followed by 2 mL of water. As shown 
in Figure S29 in the SI, the characteristic SERS signals of pro-
pranolol completely disappeared after the different washing 
cycles. Therefore, the chip could be reused at least ten times 
without altering its performance, which could reduce the cost 
of the chip by at least 10 times.

Additionally, we investigated the influence of the solution 
pH in the performance of the B20-AuSph millifluidic chip. As 
shown in Figure S30 in the SI, the sensor exhibits a similar 
sensitivity in a pH range from 2.8 to 11.2, being in all cases the 
LOD at the nanomolar range. As shown in Figure S31 in the SI, 
experiments performed with tap water or river water showed 
a decrease in the aggregation, so the B20-AuSph needs to be 
studied and optimized as a function of the matrix.

3. Conclusions

We demonstrated that the surface modification of citrate-sta-
bilized AuSphs by the adsorption of the bolaform surfactant 
B20 led to the highly reproducible and controllable assembly 
of the nanoparticles in a broad surfactant concentration range 
(10−4–10−7 m). The decrease of the surface charge combined 
with the bridging effect, both promoted by B20, were hypoth-
esized as the key points governing the assembly. Interestingly, 
MD simulations supported the bridging effect of the B20 by 
showing the preferential bridging of surfactant monomers 

when two adjacent Au(111) slabs were separated from each 
other between 20 and 25 Å. Using a portable Raman spec-
trometer, We also demonstrated the excellent SERS capabili-
ties of the colloidal B20-AuSph assemblies to detect different 
beta-blockers and analgesic drugs in the nanomolar regime. 
Additionally, we showed that a state-of-the-art CNN, such as a 
ResNet model, was a robust architecture for finding patterns 
in Raman spectra, allowing a 100% accuracy in classifying the 
concentration of different binary mixtures. Finally, the colloidal 
approach was successfully implemented in a millifluidic chip 
enabling the automation of the whole process and improving 
the sensor’s performance in terms of speed, reliability, and 
reusability without affecting its sensitivity.

4. Experimental Section

Materials: Acetaminophen (C8H9NO2, ≥99.9%), Acetylsalicylic acid
(C9H8O4, ≥98%), Atenolol (C14H22N2O3, ≥98%), Benzocaine (C9H11NO2, 
≥99%), propranolol (C16H21NO2, ≥99%), Sodium citrate tribasic
dihydrate (Na3C6H5O7·H2O, ≥98%) and were purchased from Sigma-
Aldrich. Ibuprofen (C13H18O2, 99%) and hexadecyltrimethylammonium
bromide (C19H42BrN, ≥99%) were acquired from Acros Organics. Ethanol
(C2H6O, ≥99.9%) was supplied by Scharlab, Hydrogen tetrachloroaurate
(III) hydrate (HauCl4·3H2O, 99.9%) was purchased by Alfa-Aesar,
poly(dimethylsiloxane) (PDMS, Sylgard-184) by Dow-Corning, and Crystal
Violet (C25N3H30Cl, 90%) by Analema. All chemicals were used without 
further purification. Milli-Q grade water was used in all the preparations.

Characterization: UV-vis-NIR extinction spectra of gold spheres 
nanoparticles were measured with a Cary 8454 spectrophotometer 
(Agilent). Quartz cuvettes with an optical path length of 1.0 cm were 
used. Transmission electron microscopy (TEM) images were obtained 
with a JEOL JEM 1010 transmission electron microscope operating at 
an acceleration voltage of 100 kV. Scanning electron microscopy (SEM) 
images were acquired using a JEOL JSM-6700F FEG scanning electron 
microscope operating at an acceleration voltage of 15.0 kV in secondary-
electron imaging (SEI) mode. ζ-Potential and hydrodynamic diameter 
was determined using a Zetasizer Nano S (Malvern Instruments, 
Malvern UK).

Raman characteristic peaks of the different molecules were 
characterized by directly measuring the solid powder of each molecule 
using a Renishaw InVia Reflex system. The spectrograph used a high-
resolution grating (1200 grooves per cm) with additional band-pass filter 
optics, a confocal microscope, and a 2D-CCD camera. Laser excitation 
was carried out employing a 50x objective (N.A. 0.75) with an excitation 
wavelength of 785 nm (33.9 mW) with an acquisition time of 10 s and 
five accumulations. The spectra were acquired using WiRE Software v. 
4.3 (Renishaw, UK). All SERS measurements were carried out in a QEPro 
(Ocean Insight) Raman spectrometer equipped with a back-thinned 
FFT-CCD detector. Laser excitation was carried out at 785 nm (257 mW)  
through a Raman probe BAC102 employing acquisitions times of  
30 s. All the spectra were acquired without treatment using OceanView 
Software v. 2.0.7 (Ocean Insight).

Synthesis of Gold Spheres: Gold nanospheres (AuSphs) were 
synthesized according to a previously reported seed-mediated growth 
synthetic method.[20] 150 mL of trisodium citrate dihydrate 2.2 mM was 
placed in a 250 mL three-necked round-bottomed flask with a magnetic 
stirring bar and heated until boiling. Then under vigorous stirring, 1 mL 
of an aqueous solution of 25 mM HAuCl4·3H2O was added in a one-
shot, and the solution was kept at 100 °C for 15 min. A color change 
was observed during this time. First, a black color appears that slowly 
changes to a soft reddish-pink color indicating the formation of tiny 
nanoparticles that act as seeds. After that, the solution was cooled to 
90 °C, and to overgrowth, the seeds obtained, 1 mL of 25 mM HAuCl4 
solution was quickly added to the solution twice with a 30 min interval 
between additions. After 30 min from the last addition, 55 mL of solution 
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was retired from the round-bottomed flask to a vial that immediately 
was put on an ice-water bath to stop the nanoparticle growth. Then 
53 mL of Milli-Q water and 2 mL of 60 mM sodium citrate dihydrate 
were added to the remaining solution in the round-bottomed flask. After 
the solution reached 90 °C again, 1 mL of 25 mM aqueous solution of 
HAuCl4·3H2O was added in a one-shot to the solution three times with 
a 30 min interval between additions. Then, another 55 mL of solution 
was substrated like in the previous case, followed by the addition of 
water, sodium citrate, and three additions of gold salt. This process was 
repeated several times until obtaining the desired nanoparticle diameter.

The AuSph colloids were washed by centrifugation (3500 rpm 
× 40 min), then the supernatant was discarded, and the pellet was
redispersed in water. A second centrifugation step was carried out
(3000 rpm × 40 min) but and the pellet was concentrated to a final gold
concentration of 6.95 mM in terms of Au0 with water. Their average
diameter and morphology were confirmed by TEM and SEM.

Synthesis of Bolaform (B20): Bolaform molecule, B20, was synthesized 
from the corresponding α,α´-dibromide. 1,20-dibromoeicosane was 
obtained from 11-bromoundecanoic acid by Kolbe’s electrolysis of the 
α-bromo carboxylic acid in methanol.[46] The dibromide (5 mmol) and 
anhydrous trimethylamine (10 mmol) were dissolved in 50 mL of acetone 
and heated until boiling under reflux for 96 h. The material obtained 
after removal of the solvent with a rotary evaporator was crystallized 
from ethanol-ether mixtures. The final product was characterized by 
NMR (Figure S32, Supporting Information), 1H NMR (400MHz, D2O, 
ppm): δ = 3.32 (t, 4H), 3.11 (s, 18H), 1.80 (s, 4H), 1.34 (s, 4H) and 1.29 
(s, 28H). The critical micelle concentration (CMC) was determined 
by conductivity measurements yielding a value of 4.33 × 10−3 m with a 
fraction of neutralized charge β of 0.59.

B20-induced AuSph Assembly: Different solutions of B20 were prepared 
in water (from 10−1 m to 10−6 m), and 20 µL of these solutions were 
added to a volume of 1980 µL of AuSph 0.505 mm (in terms of Au0). 
The different mixed solutions with a final concentration of gold of 
0.5 mM and final B20 concentrations between 10−3 m and 10−8 m 
were manually shaken for 5 s. Then the aggregation process was followed 
by UV-vis-NIR spectrophotometry. A new series of mixtures with different 
final B20 concentrations between 10−1 and 10−10 M were prepared again 
to measure ζ-Potential and the hydrodynamic diameter after 5 min of 
reaction. As a control experiment, the same protocol was reproduced, 
but this time, AuSphs were mixed with different concentrations of CTAB 
to characterize UV-viS, ζ-Potential, and DLS.

Millifluidic Chip Fabrication: First, the desired millifluidic chip mask 
was designed using Blender software version 2.90.1 (www.blender.org,  
Netherlands) and exported as .stl format. However, any other 3D 
modeling/CAD software that can export models in a .stl file format could 
be employed to obtain the desired design. The optimized chip design 
consists of two inlets that converge in a Y-shaped pre-mixer, a mixing 
area, a measuring chamber, and an outlet (Figure 7A). The mixer section 
consists of a sinusoidal shape with 10 curves. All the millifluidic channels 
have a square cross-section of 1 × 1 mm2, resulting in a total linear length 
of ≈8 cm. For 3D printing, the .stl file was loaded into the Ultimaker Cura 
software version 4.12.1 (Netherlands), and printed using the Creality Ender 
3 (CREALITY, China) 3D printer. The devices were printed using acrylonitrile 
butadiene styrene (ABS), employing a nozzle of 0.4 mm at 235 °C.

The obtained mask was replicated by curing a mixture of PDMS 
monomer and curing agent (10:1 w/w) for 6 h at 50 °C. The resulting 
PDMS slab was peeled off and punched to create the inlets and outlet. 
Finally, it was deposited on an uncured thin PDMS film of ≈200 µm that 
was previously prepared by spin-coating (1000 rpm for 10 s) and cured 
at 60 °C for 2 h.

In-chip B20-AuSph: In a millifluidic chip were infiltrated two solutions 
employing a constant flow rate of ≈5 µL s−1 simultaneously. One of the 
solutions was a mixture of AuSph (1 mM) and the desired analyte in 
different concentrations (from 2 × 10−4 to 2 × 10−10) while the other 
contained the surfactant B20 with a concentration of 2 × 10−6 m. In the 
mixing area the fast color change of the nanoparticles from pink to purple-
grey was observed immediately. To reuse the channel, 2 mL of CTAB 10 
mm followed by another 2 mL of water were passed through the chip.

Molecular Dynamic Simulations: MD simulations were performed 
using GROMACS (version 2021.3)[47] and the CHARMM36 force 
field.[48] The Lennard-Jones parameters for gold were those reported by 
Heinz  et  al.,[49] which have been proven to provide good descriptions 
for systems adsorbed on gold surfaces. The parameters for B20 were 
generated with the CGenFF program[50] and could be used without 
further refinement. The parameters for CTA and the chloride anions 
added to the solution to maintain electroneutrality were also those 
included in the CHARMM36 force field. Additional details of the models 
employed in the MD simulations are provided in Section 2 in the SI.

Deep Learning: Two different algorithms were applied to the 
SERS data set from six different ibuprofen-benzocaine mixtures. The 
composition of the analyzed mixtures was 0, 20, 40, 60, 80, and 100 % 
of ibuprofen with respect to the total concentration of analgesic (10−6 m) 
(Figure S24, Supporting Information). The obtained 180 SERS spectra, 
30 per mixture, were used for this classification problem. In turn, each 
sample was composed of a one-dimensional array of 1023 positions 
representing the spectral range from 1 to 2807 cm−1. First, we pre-
processed the whole data to reduce some parts of the Raman shift that 
we consider less relevant. Thus the spectral range of interest was fixed 
from 300 – 1800 cm−1 after the pre-processing (Figure S25A, Supporting 
Information). Subsequently, a baseline correction data pre-processing, 
based on adaptative iteratively reweighted Penalized Least Squares 
(airPLS),[51] was applied to each sample independently to separate 
relevant spectroscopic signals from interference effects or remove 
background effects (Figure S25B, Supporting Information). The data 
set corresponding to each ibuprofen-benzocaine mixture (Figure S25C, 
Supporting Information) was separately used to train and test the deep 
learning models.

The first deep learning model built was a Multilayer Neural Network 
(MNN) composed of 14 dense layers. The reason for creating this 
network was to study whether a more traditional architecture could solve 
the current task.[52] MNN was trained for 350 epochs with the Adam 
optimizer and the categorical cross-entropy loss function. The training 
processes used 70% of the data, randomly chosen. Finally, a test phase, 
which consisted of introducing the remaining 30% of the samples as 
inputs, was performed to see if the models could predict to which 
mixture it belongs.

The second deep learning model was a ResNet model: a modern 
convolutional neural network capable of achieving high accuracy in 
image recognition problems.[40] Considering the SERS spectrum as 
a one-dimensional vector or image, a state-of-the-art deep learning 
architecture was implemented to solve the ibuprofen-benzocaine 
mixture classification problem. This convolutional neural network 
carried out various operations such as Convolutions, Max-pooling, and 
ReLU to find unique patterns for each mixture type.

• Convolutions: It consists of sliding a predefined filter (matrix/
vector) with learnable parameters to detect features such as edges
or convex shapes over the input data creating a feature map.

• Max-pooling: It reduces the number of parameters (computational 
cost). This operation reduces the resolution of the feature map,
taking the largest value of a segment, but preserves the map
features needed for classification.

• ReLU (Rectified Linear Unit): This widely used activation function
calculates when a neuron should be activated.

Although these operations require a higher computational cost, this 
type of architecture is more appropriate for the detection of unique 
patterns in the spectra of each mixture. The central part of the ResNet 
model that was built comprises 5 residual blocks that perform these 
types of operations.

The ResNet model was trained for a total of 300 epochs with 32 
kernels, Adam optimizer, and categorical cross-entropy loss function. 
Like MNN, The RestNet training processes used 70% of the data, 
randomly chosen. Figure S26 shows the evolution of the loss and 
accuracy of the ResNet model graphically during the training phase.

Finally, a test phase consisted of introducing the remaining 30% of 
the samples as inputs to see if the models can predict which mixture 
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it belongs to. The results of both architectures are shown in the  
confusion matrices represented in Figure 6. Also, the code is available 
on Github.

B20-AuSph SERS Optimization: First, to optimize the B20 concentration 
445 µL of colloidal AuSphs (0.562 mm in terms of Au0) and 50 µL of  
10−6 m CV were placed on a quartz cuvette (0.5 cm of optical path length). 
Then 5 µL of an aqueous B20 solution was added and manually shaken 
for a few seconds. Experiments with B20 concentrations ranging from 101 
to 10−8 m were carried out. The SERS spectra were recorded each 30 s 
employing a laser power of 257 mW with a time of acquisition of 10 s.

In-Cuvette SERS Analysis of LOD: 445 µL of colloidal AuSphs 
(0.562  Mm in terms of Au0) and 50 µL of CV or drug at different 
concentrations (between 10−2 and 10−9 m) were mixed in a 0.5 cm quartz 
cuvette and then 5 µL of 10−4 M B20. After 5 min, the SERS spectra were 
recorded employing a laser power of 257 mW with 30 s of acquisition 
time. All the concentrations were characterized by triplicate, and also 
10 independent measurements of B20-AuSphs without any analyte were 
carried out.

In-Chip SERS Measurements: Once the millifluidic chip is filled, SERS 
measurements were performed employing a laser power of 257 mW 
with a time of acquisition of 10 s. All experiments were characterized by 
triplicate. Moreover, 10 independent measurements of B20-AuSphs in the 
absence of any analyte were carried out as blanks.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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