83 research outputs found

    Using Wavelets to reject background in Dark Matter experiments

    Full text link
    A method based on wavelet techniques has been developed and applied to background rejection in the data of the IGEX dark matter experiment. The method is presented and described in some detail to show how it efficiently rejects events coming from noise and microphonism through a mathematical inspection of their recorded pulse shape. The result of the application of the method to the last data of IGEX is presented.Comment: 14 pages, 8 figures. Submitted to Astrop. Phy

    TREX-DM: a low background Micromegas-based TPC for low-mass WIMP detection

    Get PDF
    Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we describe the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass ∼\sim0.3 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This work describes the commissioning of the actual setup situated in a laboratory on surface and the updates needed for a possible physics run at the Canfranc Underground Laboratory (LSC) in 2016. A preliminary background model of TREX-DM is also presented, based on a Geant4 simulation, the simulation of the detector's response and two discrimination methods: a conservative muon/electron and one based on a neutron source. Based on this background model, TREX-DM could be competitive in the search for low-mass WIMPs. In particular it could be sensitive, e.g., to the low-mass WIMP interpretation of the DAMA/LIBRA and other hints in a conservative scenario.Comment: Proceedings of the XIV International Conference on Topics in Astroparticle and Underground Physics (TAUP 2015), 7-11 September 2015, Torino, Ital

    Neutron background at the Canfranc Underground Laboratory and its contribution to the IGEX-DM dark matter experiment

    Full text link
    A quantitative study of the neutron environment in the Canfranc Underground Laboratory has been performed. The analysis is based on a complete set of simulations and, particularly, it is focused on the IGEX-DM dark matter experiment. The simulations are compared to the IGEX-DM low energy data obtained with different shielding conditions. The results of the study allow us to conclude, with respect to the IGEX-DM background, that the main neutron population, coming from radioactivity from the surrounding rock, is practically eliminated after the implementation of a suitable neutron shielding. The remaining neutron background (muon-induced neutrons in the shielding and in the rock) is substantially below the present background level thanks to the muon veto system. In addition, the present analysis gives us a further insight on the effect of neutrons in other current and future experiments at the Canfranc Underground Laboratory. The comparison of simulations with the body of data available has allowed to set the flux of neutrons from radioactivity of the Canfranc rock, (3.82 +- 0.44) x 10^{-6} cm^{-2} s^{-1}, as well as the flux of muon-induced neutrons in the rock, (1.73 +- 0.22(stat) \+- 0.69(syst)) x 10^{-9} cm^{-2} s^{-1}, or the rate of neutron production by muons in the lead shielding, (4.8 +- 0.6 (stat) +- 1.9 (syst)) x 10^{-9} cm^{-3} s^{-1}.Comment: 17 pages, 8 figures, elsart document class; final version to appear in Astroparticle Physic

    TREX-DM: a low background Micromegas-based TPC for low mass WIMP detection

    Get PDF
    Dark Matter experiments are recently focusing their detection techniques in low-mass WIMPs, which requires the use of light elements and low energy threshold. In this context, we present the TREX-DM experiment, a low background Micromegas-based TPC for low-mass WIMP detection. Its main goal is the operation of an active detection mass ∼\sim0.300 kg, with an energy threshold below 0.4 keVee and fully built with previously selected radiopure materials. This article describes the actual setup, the first results of the comissioning in Ar+2\%iC4_4H10_{10} at 1.2 bar and the future updates for a possible physics run at the Canfranc Underground Laboratory in 2016. A first background model is also presented, based on Geant4 simulations and a muon/electron discrimination method. In a conservative scenario, TREX-DM could be sensitive to DAMA/LIBRA and other hints of positive WIMPs signals, with some space for improvement with a neutron/electron discrimination method or the use of other light gases.Comment: Proceedings of the 7th Symposium on Large TPCs for Low-Energy Rare Event Detectio

    Lowering the background level and the energy threshold of Micromegas x-ray detectors for axion searches

    Full text link
    Axion helioscopes search for solar axions by their conversion in x-rays in the presence of high magnetic fields. The use of low background x-ray detectors is an essential component contributing to the sensitivity of these searches. In this work, we review the recent advances on Micromegas detectors used in the CERN Axion Solar Telescope (CAST) and proposed for the future International Axion Observatory (IAXO). The actual setup in CAST has achieved background levels below 10−6^{-6} keV−1^{-1} cm−2^{-2} s−1^{-1}, a factor 100 lower than the first generation of Micromegas detectors. This reduction is based on active and passive shielding techniques, the selection of radiopure materials, offline discrimination techniques and the high granularity of the readout. We describe in detail the background model of the detector, based on its operation at CAST site and at the Canfranc Underground Laboratory (LSC), as well as on Geant4 simulations. The best levels currently achieved at LSC are low than 10−7^{-7} keV−1^{-1} cm−2^{-2} s−1^{-1} and show good prospects for the application of this technology in IAXO. Finally, we present some ideas and results for reducing the energy threshold of these detectors below 1 keV, using high-transparent windows, autotrigger electronics and studying the cluster shape at different energies. As a high flux of axion-like-particles is expected in this energy range, a sub-keV threshold detector could enlarge the physics case of axion helioscopes.Comment: Proceedings of 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014

    First results of the ROSEBUD Dark Matter experiment

    Full text link
    Rare Objects SEarch with Bolometers UndergrounD) is an experiment which attempts to detect low mass Weak Interacting Massive Particles (WIMPs) through their elastic scattering off Al and O nuclei. It consists of three small sapphire bolometers (of a total mass of 100 g) with NTD-Ge sensors in a dilution refrigerator operating at 20 mK in the Canfranc Underground Laboratory. We report in this paper the results of several runs (of about 10 days each) with successively improved energy thresholds, and the progressive background reduction obtained by improvement of the radiopurity of the components and subsequent modifications in the experimental assembly, including the addition of old lead shields. Mid-term plans and perspectives of the experiment are also presented.Comment: 14 pages, 8 figures, submitted to Astroparticle Physic
    • …
    corecore