32,871 research outputs found

    Cosmological Effects of Nonlinear Electrodynamics

    Full text link
    It will be shown that a given realization of nonlinear electrodynamics, used as source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way to solve two important problems in cosmology

    Quantum phase transitions in a two-dimensional quantum XYX model: Ground-state fidelity and entanglement

    Full text link
    A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin 1/2 anti-ferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground state wave functions.Comment: 4+ pages, 3 figure

    Modelling Defect Cavities Formed in Inverse Three-Dimensional Rod-Connected Diamond Photonic Crystals

    Get PDF
    Defect cavities in 3D photonic crystal can trap and store light in the smallest volumes allowable in dielectric materials, enhancing non-linearities and cavity QED effects. Here, we study inverse rod-connected diamond (RCD) crystals containing point defect cavities using plane-wave expansion and finite-difference time domain methods. By optimizing the dimensions of the crystal, wide photonic band gaps are obtained. Mid-bandgap resonances can then be engineered by introducing point defects in the crystal. We investigate a variety of single spherical defects at different locations in the unit cell focusing on high-refractive-index contrast (3.3:1) inverse RCD structures; quality factors (Q-factors) and mode volumes of the resonant cavity modes are calculated. By choosing a symmetric arrangement, consisting of a single sphere defect located at the center of a tetrahedral arrangement, mode volumes < 0.06 cubic wavelengths are obtained, a record for high index cavities.Comment: 7 pages, 8 figure

    On the abundance discrepancy problem in HII regions

    Get PDF
    The origin of the abundance discrepancy is one of the key problems in the physics of photoionized nebula. In this work, we analize and discuss data for a sample of Galactic and extragalactic HII regions where this abundance discrepancy has been determined. We find that the abundance discrepancy factor (ADF) is fairly constant and of the order of 2 in all the available sample of HII regions. This is a rather different behaviour than that observed in planetary nebulae, where the ADF shows a much wider range of values. We do not find correlations between the ADF and the O/H, O++/H+ ratios, the ionization degree, Te(High), Te(Low)/ Te(High), FWHM, and the effective temperature of the main ionizing stars within the observational uncertainties. These results indicate that whatever mechanism is producing the abundance discrepancy in HII regions it does not substantially depend on those nebular parameters. On the contrary, the ADF seems to be slightly dependent on the excitation energy, a fact that is consistent with the predictions of the classical temperature fluctuations paradigm. Finally, we obtain that Te values obtained from OII recombination lines in HII regions are in agreement with those obtained from collisionally excited line ratios, a behaviour that is again different from that observed in planetary nebulae. These similar temperature determinations are in contradiction with the predictions of the model based on the presence of chemically inhomogeneous clumps but are consistent with the temperature fluctuations paradigm. We conclude that all the indications suggest that the physical mechanism responsible of the abundance discrepancy in HII regions and planetary nebulae are different.Comment: 14 pages, 8 figures, 9 tables. Accepted for publication in the Ap

    Framework for classifying logical operators in stabilizer codes

    Full text link
    Entanglement, as studied in quantum information science, and non-local quantum correlations, as studied in condensed matter physics, are fundamentally akin to each other. However, their relationship is often hard to quantify due to the lack of a general approach to study both on the same footing. In particular, while entanglement and non-local correlations are properties of states, both arise from symmetries of global operators that commute with the system Hamiltonian. Here, we introduce a framework for completely classifying the local and non-local properties of all such global operators, given the Hamiltonian and a bi-partitioning of the system. This framework is limited to descriptions based on stabilizer quantum codes, but may be generalized. We illustrate the use of this framework to study entanglement and non-local correlations by analyzing global symmetries in topological order, distribution of entanglement and entanglement entropy.Comment: 20 pages, 9 figure

    Sites for Gamma-ray Astronomy in Argentina

    Full text link
    We have searched for possible sites in Argentina for the installation of large air Cherenkov telescope arrays and water Cherenkov systems. At present seven candidates are identified at altitudes from 2500 to 4500 m. The highest sites are located at the Northwest of the country, in La Puna. Sites at 2500 and 3100 m are located in the West at El Leoncito Observatory, with excellent infrastructure. A description of these candidate sites is presented with emphasis on infrastructure and climatology.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Anomalous diffusion, clustering, and pinch of impurities in plasma edge turbulence

    Full text link
    The turbulent transport of impurity particles in plasma edge turbulence is investigated. The impurities are modeled as a passive fluid advected by the electric and polarization drifts, while the ambient plasma turbulence is modeled using the two-dimensional Hasegawa--Wakatani paradigm for resistive drift-wave turbulence. The features of the turbulent transport of impurities are investigated by numerical simulations using a novel code that applies semi-Lagrangian pseudospectral schemes. The diffusive character of the turbulent transport of ideal impurities is demonstrated by relative-diffusion analysis of the evolution of impurity puffs. Additional effects appear for inertial impurities as a consequence of compressibility. First, the density of inertial impurities is found to correlate with the vorticity of the electric drift velocity, that is, impurities cluster in vortices of a precise orientation determined by the charge of the impurity particles. Second, a radial pinch scaling linearly with the mass--charge ratio of the impurities is discovered. Theoretical explanation for these observations is obtained by analysis of the model equations.Comment: This article has been submitted to Physics of Plasmas. After it is published, it will be found at http://pop.aip.org/pop

    Ground state fidelity from tensor network representations

    Full text link
    For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well-defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields.Comment: 4 pages, 2 figures. Published version in Physical Review Letter
    corecore