1,164 research outputs found

    Wideband performance comparison between the 40 GHz and 60 GHz frequency bands for indoor radio channels

    Get PDF
    When 5G networks are to be deployed, the usability of millimeter-wave frequency allocations seems to be left out of the debate. However, there is an open question regarding the advantages and disadvantages of the main candidates for this allocation: The use of the licensed spectrum near 40 GHz or the unlicensed band at 60 GHz. Both bands may be adequate for high performance radio communication systems, and this paper provides insight into such alternatives. A large measurement campaign supplied enough data to analyze and to evaluate the network performance for both frequency bands in different types of indoor environments: Both large rooms and narrow corridors, and both line of sight and obstructed line of sight conditions. As a result of such a campaign and after a deep analysis in terms of wideband parameters, the radio channel usability is analyzed with numerical data regarding its performance

    From Embedded to Integrated: Digital Information Literacy and New Teaching Models for Academic Librarians

    Get PDF
    This paper describes our experience launching LIBR 200, moving beyond traditional library instruction to integrating digital information literacy into the larger curriculum. By creating a credit course that focuses on digital information literacy, the NLU Library was able to fill a void in the general education curriculum, thus making it possible for LIBR 200 to be included in undergraduate degree programs. Because librarians are faculty and have fostered a positive and collaborative reputation throughout the University, the library faculty role has evolved to include participation in program development and the development and teaching of library credit courses in order to address the information and digital literacy needs of students

    A First Exposure to Statistical Mechanics for Life Scientists

    Full text link
    Statistical mechanics is one of the most powerful and elegant tools in the quantitative sciences. One key virtue of statistical mechanics is that it is designed to examine large systems with many interacting degrees of freedom, providing a clue that it might have some bearing on the analysis of the molecules of living matter. As a result of data on biological systems becoming increasingly quantitative, there is a concomitant demand that the models set forth to describe biological systems be themselves quantitative. We describe how statistical mechanics is part of the quantitative toolkit that is needed to respond to such data. The power of statistical mechanics is not limited to traditional physical and chemical problems and there are a host of interesting ways in which these ideas can be applied in biology. This article reports on our efforts to teach statistical mechanics to life science students and provides a framework for others interested in bringing these tools to a nontraditional audience in the life sciences.Comment: 27 pages, 16 figures. Submitted to American Journal of Physic

    Quantitative dissection of the simple repression input–output function

    Get PDF
    We present a quantitative case study of transcriptional regulation in which we carry out a systematic dialogue between theory and measurement for an important and ubiquitous regulatory motif in bacteria, namely, that of simple repression. This architecture is realized by a single repressor binding site overlapping the promoter. From the theory point of view, this motif is described by a single gene regulation function based upon only a few parameters that are convenient theoretically and accessible experimentally. The usual approach is turned on its side by using the mathematical description of these regulatory motifs as a predictive tool to determine the number of repressors in a collection of strains with a large variation in repressor copy number. The predictions and corresponding measurements are carried out over a large dynamic range in both expression fold change (spanning nearly four orders of magnitude) and repressor copy number (spanning about two orders of magnitude). The predictions are tested by measuring the resulting level of gene expression and are then validated by using quantitative immunoblots. The key outcomes of this study include a systematic quantitative analysis of the limits and validity of the input–output relation for simple repression, a precise determination of the in vivo binding energies for DNA–repressor interactions for several distinct repressor binding sites, and a repressor census for Lac repressor in Escherichia coli

    DNA Architecture and Transcriptional Regulation Exploring DNA's Mechanical Code

    Get PDF

    Application of the biomization technique in the Eastern Colombian Andes

    Full text link
    Two pollen records (Lake Fuquene and Pantano de Martos) are analyzed in order to test the usefulness of the Biomization technique to management on forest adaptation to climate change. This work focuses on Biomes and Plant Functional Types response to climate changes on specific dates (18, 14, 12.5, 8 and 6 Kyr) along the Late Quaternary, as deduced from the pollen composition. Results show different responses of vegetation to changes in past environmental conditions, which can be attributed to the different altitudes of the two study sites. While biomes in Lake Fuquene (2500 m a.s.l.) shift from Cool Grassland at 18 Kyr to Cool Mixed Forest and Cool evergreen Forest at 6 Kyr ago, no biome shift is detected in Pantano de Martos (3200 m a.s.l.) through the Late Quaternary. A look to the different Plant Functional Types taking part on the surroundings of the study sites at different ages, together with the analyses of Arboreal / Non Arboreal pollen percentages, give a detailed idea of the ecosystem response to past climate changes. This study shows the potential of the Biomization technique as a simple and powerful tool to analyze ecosystem responses at local and regional scales

    First-principles calculation of DNA looping in tethered particle experiments

    Get PDF
    We calculate the probability of DNA loop formation mediated by regulatory proteins such as Lac repressor (LacI), using a mathematical model of DNA elasticity. Our model is adapted to calculating quantities directly observable in Tethered Particle Motion (TPM) experiments, and it accounts for all the entropic forces present in such experiments. Our model has no free parameters; it characterizes DNA elasticity using information obtained in other kinds of experiments. [...] We show how to compute both the "looping J factor" (or equivalently, the looping free energy) for various DNA construct geometries and LacI concentrations, as well as the detailed probability density function of bead excursions. We also show how to extract the same quantities from recent experimental data on tethered particle motion, and then compare to our model's predictions. [...] Our model successfully reproduces the detailed distributions of bead excursion, including their surprising three-peak structure, without any fit parameters and without invoking any alternative conformation of the LacI tetramer. Indeed, the model qualitatively reproduces the observed dependence of these distributions on tether length (e.g., phasing) and on LacI concentration (titration). However, for short DNA loops (around 95 basepairs) the experiments show more looping than is predicted by the harmonic-elasticity model, echoing other recent experimental results. Because the experiments we study are done in vitro, this anomalously high looping cannot be rationalized as resulting from the presence of DNA-bending proteins or other cellular machinery. We also show that it is unlikely to be the result of a hypothetical "open" conformation of the LacI tetramer.Comment: See the supplement at http://www.physics.upenn.edu/~pcn/Ms/TowlesEtalSuppl.pdf . This revised version accepted for publication at Physical Biolog

    Operator Sequence Alters Gene Expression Independently of Transcription Factor Occupancy in Bacteria

    Get PDF
    A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression
    • …
    corecore