12 research outputs found

    Crystal engineering using functionalized adamantane

    Full text link
    We performed a first principles investigation on the structural, electronic, and optical properties of crystals made of chemically functionalized adamantane molecules. Several molecular building blocks, formed by boron and nitrogen substitutional functionalizations, were considered to build zincblende and wurtzite crystals, and the resulting structures presented large bulk moduli and cohesive energies, wide and direct bandgaps, and low dielectric constants (low-κ\kappa materials). Those properties provide stability for such structures up to room temperature, superior to those of typical molecular crystals. This indicates a possible road map for crystal engineering using functionalized diamondoids, with potential applications ranging from space filling between conducting wires in nanodevices to nano-electro-mechanical systems

    Structural, Electronic, and Vibrational Properties of Amino-adamantane and Rimantadine Isomers

    Full text link
    We performed a first principles total energy investigation on the structural, electronic, and vibrational properties of adamantane molecules, functionalized with amine and ethanamine groups. We computed the vibrational signatures of amantadine and rimantadine isomers with the functional groups bonded to different carbon sites. By comparing our results with recent infrared and Raman spectroscopic data, we discuss the possible presence of different isomers in experimental samples

    Functionalized adamantane: fundamental building blocks for nanostructure self-assembly

    Full text link
    We report first principles calculations on the electronic and structural properties of chemically functionalized adamantane molecules, either in isolated or crystalline forms. Boron and nitrogen functionalized molecules, aza-, tetra-aza-, bora-, and tetra-bora-adamantane, were found to be very stable in terms of energetics, consistent with available experimental data. Additionally, a hypothetical molecular crystal in a zincblende structure, involving the pair tetra-bora-adamantane and tetra-aza-adamantane, was investigated. This molecular crystal presented a direct and large electronic bandgap and a bulk modulus of 20 GPa. The viability of using those functionalized molecules as fundamental building blocks for nanostructure self-assembly is discussed

    Physical properties of diamondoids

    No full text
    Neste trabalho estudamos as propriedades estruturais (estabilidade configuracional e vibracional), eletrônicas e ópticas de diamantóides diamondoids) puros e funcionalizados, em suas fases isolada e cristalina. As investigações foram efetuadas através de simulações computacionais baseadas em métodos de primeiros princípios dentro do formalismo da teoria do funcional da densidade e utilizando o método Projector Augmented-Wave, implementado no código computacional VASP (Vienna ab initio simulation package), dentro do modelo de supercélula. Investigamos as propriedades de moléculas de adamantano e as respectivas modificações causadas pela sua funcionalização com átomos de boro e/ou nitrogênio, e dos radiais derivados do adamantil. Finalmente, investigamos a viabilidade de se usar essas moléculas funcionalizadas como blocos fundamentais para construir, através de um processo de auto-organização, cristais moleculares. As propriedades estruturais, eletrônicas e vibracionais das moléculas de adamantano e seus amino derivados foram investigadas usando o código computacional Gaussian, com a utilização do funcional híbrido B3LYP/6-31+G¤. Investigamos as propriedades estruturais e energéticas dos isômeros da amantadina e da rimantadina, onde os grupos amina e dimetilamina foram introduzidos em dois diferentes sítios da molécula de adamantano. Descobrimos que a distribuição de carga do orbital eletrônico mais alto ocupado está sempre associada com o par de elétrons do orbital lone pair do átomo de nitrogênio do radical, sendo este, portanto, o sítio mais reativo de qualquer dessas moléculas. Encontramos uma pequena diferença na energia total entre as formas isoméricas da amantadina e da rimantadina, que apontou para a possibilidade de se encontrar concentrações de diferentes isótopos nas amostras experimentais. A comparação dos espectros vibracionais teóricos e experimentais sugere, também, a presença de formas isoméricas da amantadina e da rimantadina nas amostras. A estabilidade dos cristais moleculares, formados por moléculas de adamantano funcionalizadas, foi quantificada pelo valor de suas energias de coesão, enquanto que sua rigidez pelo valor de seus bulk moduli. Encontramos que todos eles são bastante estáveis, com valores de energia de coesão no in-tervalo de 1 a 6 eV/ligação e do bulk modulus no intervalo de 20-40 GPa, que é consideravelmente menor do que em sólidos covalentes típicos, tais como o diamante e o nitreto de boro. No entanto, ainda é muito maior do que os valores, da ordem de 10 GPa, encontrados para outros cristais moleculares típicos, onde a interação intermolecular é fraca e do tipo dispersiva. Obtivemos que estes cristais moleculares apresentam gap de energia direto e largo, indicando potenciais aplicações em opto-eletrônica. Além disso, averiguamos que eles podem ser classificados como dielétricos de baixo-, podendo ser utilizados nas interconexões de nanodispositivos.In this investigation, we studied the structural, electronic, and optical properties of pure and functionalized diamondoids in their isolated and crystalline phases. The investigations were carried by computational simulations using ab initio methods, based on the density functional theory and the projector augmented-wave methods. All these elements were incorporated in the VASP computational package (Vienna ab initio simulation package), using a super-cell approach. We investigated the properties of the adamantane molecules and the respective modifications resulting from chemical functionalization with boron and/or nitrogen atoms and the adamantyl derived radicals. Finally, we investigated the viability of using such functionalized molecules as fundamental building blocks to build self-organized molecular crystals. The structural, electronic and vibrational properties of adamantane and its amino derived molecules were investigated by the Gaussian computational package, using the B3LYP/6-31+G¤ hybrid functional. We investigated the energetics and structural properties of the amantadine and rimantadine isomers, in which the amine and dimetilamine groups were introduced in different molecular sites of adamantane. We found that the charge distribution of the highest occupied orbital is always associated with the lone pair of the nitrogen site, being the most reactive one in those molecules. We found a small energy difference between the isomeric forms of amantadine and rimantadine, suggesting the possibility of finding concentrations of both isomers in experimental samples. The comparison of the theoretical and experimental vibrational spectra also suggested the presence of different isomers in samples. The rigidity of the molecular crystals, formed by functionalized adamantane molecules, could be determined by their bulk moduli while their stability by the cohesive energies. We found values in the 1-6 eV range for cohesion and in the 20-40 GPa range for the bulk modulus, which is considerably lower than in typical covalent solids, but it is considerably larger than values of typical molecular crystals, in the 10 GPa range. Those molecular crystals present large and direct electronic gaps, suggesting potential applications in opto-electronics. Additionally, those crystals could be classified as low-k dielectric, which could be used as fillings in interconections in nanodevices

    The Structural and Electronic Properties of Tin Oxide Nanowires: An Ab Initio Investigation

    No full text
    We performed an ab initio investigation on the properties of rutile tin oxide (SnOx) nanowires. We computed the wire properties determining the equilibrium geometries, binding energies, and electronic band structures for several wire dimensions and surface facet configurations. The results allowed us to establish scaling laws for the structural properties, in terms of the nanowire perimeters. The results also showed that the surface states control most of the electronic properties of the nanowires. Oxygen incorporation in the nanowire surfaces passivated the surface-related electronic states, and the resulting quantum properties and scaling laws were fully consistent with electrons confined inside the nanowire. Additionally, oxygen incorporation in the wire surfaces generated an unbalanced concentration of spin up and down electrons, leading to magnetic states for the nanowires.Brazilian agency FAPESPBrazilian agency FAPESPBrazilian agency CNPqBrazilian agency CNP
    corecore