382 research outputs found

    Formalizing consistency and coherence of representation learning

    Get PDF
    In the study of reasoning in neural networks, recent efforts have sought to improve consistency and coherence of sequence models, leading to important developments in the area of neuro-symbolic AI. In symbolic AI, the concepts of consistency and coherence can be defined and verified formally, but for neural networks these definitions are lacking. The provision of such formal definitions is crucial to offer a common basis for the quantitative evaluation and systematic comparison of connectionist, neuro-symbolic and transfer learning approaches. In this paper, we introduce formal definitions of consistency and coherence for neural systems. To illustrate the usefulness of our definitions, we propose a new dynamic relation-decoder model built around the principles of consistency and coherence. We compare our results with several existing relation-decoders using a partial transfer learning task based on a novel data set introduced in this paper. Our experiments show that relation-decoders that maintain consistency over unobserved regions of representation space retain coherence across domains, whilst achieving better transfer learning performance

    Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning

    Full text link
    Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL's ability to learn using weakly supervised data and DRNN's ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model's abilities and shortcomings, with some final remarks about possible deployment directions

    Logic tensor networks for semantic image interpretation

    Get PDF
    Semantic Image Interpretation (SII) is the task of extracting structured semantic descriptions from images. It is widely agreed that the combined use of visual data and background knowledge is of great importance for SII. Recently, Statistical Relational Learning (SRL) approaches have been developed for reasoning under uncertainty and learning in the presence of data and rich knowledge. Logic Tensor Networks (LTNs) are a SRL framework which integrates neural networks with first-order fuzzy logic to allow (i) efficient learning from noisy data in the presence of logical constraints, and (ii) reasoning with logical formulas describing general properties of the data. In this paper, we develop and apply LTNs to two of the main tasks of SII, namely, the classification of an image's bounding boxes and the detection of the relevant part-of relations between objects. To the best of our knowledge, this is the first successful application of SRL to such SII tasks. The proposed approach is evaluated on a standard image processing benchmark. Experiments show that background knowledge in the form of logical constraints can improve the performance of purely data-driven approaches, including the state-of-theart Fast Region-based Convolutional Neural Networks (Fast R-CNN). Moreover, we show that the use of logical background knowledge adds robustness to the learning system when errors are present in the labels of the training data

    Formalizing Consistency and Coherence of Representation Learning

    Get PDF
    In the study of reasoning in neural networks, recent efforts have sought to improve consistency and coherence of sequence models, leading to important developments in the area of neuro-symbolic AI. In symbolic AI, the concepts of consistency and coherence can be defined and verified formally, but for neural networks these definitions are lacking. The provision of such formal definitions is crucial to offer a common basis for the quantitative evaluation and systematic comparison of connectionist, neuro-symbolic and transfer learning approaches. In this paper, we introduce formal definitions of consistency and coherence for neural systems. To illustrate the usefulness of our definitions, we propose a new dynamic relation-decoder model built around the principles of consistency and coherence. We compare our results with several existing relation-decoders using a partial transfer learning task based on a novel data set introduced in this paper. Our experiments show that relation-decoders that maintain consistency over unobserved regions of representation space retain coherence across domains, whilst achieving better transfer learning performance

    Coherent and consistent relational transfer learning with auto-encoders

    Get PDF
    Human defined concepts are inherently transferable, but it is not clear under what conditions they can be modelled effectively by non-symbolic artificial learners. This paper argues that for a transferable concept to be learned, the system of relations that define it must be coherent across domains and properties. That is, they should be consistent with respect to relational constraints, and this consistency must extend beyond the representations encountered in the source domain. Further, where relations are modelled by differentiable functions, their gradients must conform – the functions must at times move together to preserve consistency. We propose a Partial Relation Transfer (PRT) task which exposes how well relation-decoders model these properties, and exemplify this with ordinality prediction transfer task, including a new data set for the transfer domain. We evaluate this on existing relation-decoder models, as well as a novel model designed around the principles of consistency and gradient conformity. Results show that consistency across broad regions of input space indicates good transfer performance, and that good gradient conformity facilitates consistency
    • …
    corecore