382 research outputs found
Recommended from our members
Value-based argumentation frameworks as neural-symbolic learning systems
While neural networks have been successfully used in a number of machine learning applications, logical languages have been the standard for the representation of argumentative reasoning. In this paper, we establish a relationship between neural networks and argumentation networks, combining reasoning and learning in the same argumentation framework. We do so by presenting a new neural argumentation algorithm, responsible for translating argumentation networks into standard neural networks. We then show a correspondence between the two networks. The algorithm works not only for acyclic argumentation networks, but also for circular networks, and it enables the accrual of arguments through learning as well as the parallel computation of arguments
Formalizing consistency and coherence of representation learning
In the study of reasoning in neural networks, recent efforts have sought to improve consistency and coherence of sequence models, leading to important developments in the area of neuro-symbolic AI. In symbolic AI, the concepts of consistency and coherence can be defined and verified formally, but for neural networks these definitions are lacking. The provision of such formal definitions is crucial to offer a common basis for the quantitative evaluation and systematic comparison of connectionist, neuro-symbolic and transfer learning approaches. In this paper, we introduce formal definitions of consistency and coherence for neural systems. To illustrate the usefulness of our definitions, we propose a new dynamic relation-decoder model built around the principles of consistency and coherence. We compare our results with several existing relation-decoders using a partial transfer learning task based on a novel data set introduced in this paper. Our experiments show that relation-decoders that maintain consistency over unobserved regions of representation space retain coherence across domains, whilst achieving better transfer learning performance
Recommended from our members
Learning and Representing Temporal Knowledge in Recurrent Networks
The effective integration of knowledge representation, reasoning, and learning in a robust computational model is one of the key challenges of computer science and artificial intelligence. In particular, temporal knowledge and models have been fundamental in describing the behavior of computational systems. However, knowledge acquisition of correct descriptions of a system's desired behavior is a complex task. In this paper, we present a novel neural-computation model capable of representing and learning temporal knowledge in recurrent networks. The model works in an integrated fashion. It enables the effective representation of temporal knowledge, the adaptation of temporal models given a set of desirable system properties, and effective learning from examples, which in turn can lead to temporal knowledge extraction from the corresponding trained networks. The model is sound from a theoretical standpoint, but it has also been tested on a case study in the area of model verification and adaptation. The results contained in this paper indicate that model verification and learning can be integrated within the neural computation paradigm, contributing to the development of predictive temporal knowledge-based systems and offering interpretable results that allow system researchers and engineers to improve their models and specifications. The model has been implemented and is available as part of a neural-symbolic computational toolkit
Recommended from our members
Rule Extraction from Support Vector Machines: A Geometric Approach. Technical Report
This paper presents a new approach to rule extraction from Support Vector Machines. SVMs have been applied successfully in many areas with excellent generalization results; rule extraction can offer explanation capability to SVMs. We propose to approximate the SVM classification boundary through querying followed by clustering, searching and then to extract rules by solving an optimization problem. Theoretical proof and experimental results then indicate that the rules can be used to validate the SVM results, since maximum fidelity with high accuracy can be achieved
Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning
Although aviation accidents are rare, safety incidents occur more frequently
and require a careful analysis to detect and mitigate risks in a timely manner.
Analyzing safety incidents using operational data and producing event-based
explanations is invaluable to airline companies as well as to governing
organizations such as the Federal Aviation Administration (FAA) in the United
States. However, this task is challenging because of the complexity involved in
mining multi-dimensional heterogeneous time series data, the lack of
time-step-wise annotation of events in a flight, and the lack of scalable tools
to perform analysis over a large number of events. In this work, we propose a
precursor mining algorithm that identifies events in the multidimensional time
series that are correlated with the safety incident. Precursors are valuable to
systems health and safety monitoring and in explaining and forecasting safety
incidents. Current methods suffer from poor scalability to high dimensional
time series data and are inefficient in capturing temporal behavior. We propose
an approach by combining multiple-instance learning (MIL) and deep recurrent
neural networks (DRNN) to take advantage of MIL's ability to learn using weakly
supervised data and DRNN's ability to model temporal behavior. We describe the
algorithm, the data, the intuition behind taking a MIL approach, and a
comparative analysis of the proposed algorithm with baseline models. We also
discuss the application to a real-world aviation safety problem using data from
a commercial airline company and discuss the model's abilities and
shortcomings, with some final remarks about possible deployment directions
Logic tensor networks for semantic image interpretation
Semantic Image Interpretation (SII) is the task of extracting structured semantic descriptions from images. It is widely agreed that the combined use of visual data and background knowledge is of great importance for SII. Recently, Statistical Relational Learning (SRL) approaches have been developed for reasoning under uncertainty and learning in the presence of data and rich knowledge. Logic Tensor Networks (LTNs) are a SRL framework which integrates neural networks with first-order fuzzy logic to allow (i) efficient learning from noisy data in the presence of logical constraints, and (ii) reasoning with logical formulas describing general properties of the data. In this paper, we develop and apply LTNs to two of the main tasks of SII, namely, the classification of an image's bounding boxes and the detection of the relevant part-of relations between objects. To the best of our knowledge, this is the first successful application of SRL to such SII tasks. The proposed approach is evaluated on a standard image processing benchmark. Experiments show that background knowledge in the form of logical constraints can improve the performance of purely data-driven approaches, including the state-of-theart Fast Region-based Convolutional Neural Networks (Fast R-CNN). Moreover, we show that the use of logical background knowledge adds robustness to the learning system when errors are present in the labels of the training data
Formalizing Consistency and Coherence of Representation Learning
In the study of reasoning in neural networks, recent efforts have sought to improve consistency and coherence of sequence models, leading to important developments in the area of neuro-symbolic AI. In symbolic AI, the concepts of consistency and coherence can be defined and verified formally, but for neural networks these definitions are lacking. The provision of such formal definitions is crucial to offer a common basis for the quantitative evaluation and systematic comparison of connectionist, neuro-symbolic and transfer learning approaches. In this paper, we introduce formal definitions of consistency and coherence for neural systems. To illustrate the usefulness of our definitions, we propose a new dynamic relation-decoder model built around the principles of consistency and coherence. We compare our results with several existing relation-decoders using a partial transfer learning task based on a novel data set introduced in this paper. Our experiments show that relation-decoders that maintain consistency over unobserved regions of representation space retain coherence across domains, whilst achieving better transfer learning performance
Coherent and consistent relational transfer learning with auto-encoders
Human defined concepts are inherently transferable, but it is not clear under what conditions they can be modelled effectively by non-symbolic artificial learners. This paper argues that for a transferable concept to be learned, the system of relations that define it must be coherent across domains and properties. That is, they should be consistent with respect to relational constraints, and this consistency must extend beyond the representations encountered in the source domain. Further, where relations are modelled by differentiable functions, their gradients must conform – the functions must at times move together to preserve consistency. We propose a Partial Relation Transfer (PRT) task which exposes how well relation-decoders model these properties, and exemplify this with ordinality prediction transfer task, including a new data set for the transfer domain. We evaluate this on existing relation-decoder models, as well as a novel model designed around the principles of consistency and gradient conformity. Results show that consistency across broad regions of input space indicates good transfer performance, and that good gradient conformity facilitates consistency
Recommended from our members
Argumentation Neural Networks: Value-based Argumentation Frameworks as Neural-Symbolic Learning Systems
Recommended from our members
A Neural-Symbolic Cognitive Agent for Online Learning and Reasoning
In real-world applications, the effective integration of learning and reasoning in a cognitive agent model is a difficult task. However, such integration may lead to a better understanding, use and construction of more realistic models. Unfortunately, existing models are either oversimplified or require much processing time, which is unsuitable for online learning and reasoning. Currently, controlled environments like training simulators do not effectively integrate learning and reasoning. In particular, higher-order concepts and cognitive abilities have many unknown temporal relations with the data, making it impossible to represent such relationships by hand. We introduce a novel cognitive agent model and architecture for online learning and reasoning that seeks to effectively represent, learn and reason in complex training environments. The agent architecture of the model combines neural learning with symbolic knowledge representation. It is capable of learning new hypotheses from observed data, and infer new beliefs based on these hypotheses. Furthermore, it deals with uncertainty and errors in the data using a Bayesian inference model. The validation of the model on real-time simulations and the results presented here indicate the promise of the approach when performing online learning and reasoning in real-world scenarios, with possible applications in a range of areas
- …