4 research outputs found

    Occurrence of proteinaceous moieties in S-and O-rich Late Tithonian kerogen (Kashpir oil Shales, Russia)

    Get PDF
    Abstract The polar fraction, isolated from the o-line pyrolysate at 400 C of a Late Tithonian, sulphur-and oxygen-rich, kerogen was examined via Raney Nickel desulphurization and TMAH thermochemolysis. Important information on this kerogen, not accessible via conventional pyrolysis, was thus obtained: (i) its structure is not simply based on alkyl skeletons cross-linked by ether and (poly)sulphide bridges, (ii) TMAH thermochemolysis aorded direct evidence of the survival of proteinaceous moieties in this 140 million years old kerogen and (iii) encapsulation within an aliphatic organic matrix was probably the main pathway reponsible for such a conspicuous preservation, also possibly favoured by the presence of numerous sulphur links.

    Novel hydrothermal carbonization of cellulose catalyzed by montmorillonite to produce kerogen-like hydrochar

    No full text
    The conversion of cellulose to petroleum-like fuel is a very challenging yet attractive route to developing biomass-to-fuel technology. Many attempts have been made in liquefaction, pyrolysis and gasification of cellulose to produce fuels or intermediate chemicals. Previous studies indicate that these processes are tough. Hence, the present work is concerned with the development of new technologies for the conversion of cellulose into materials which are analogies to the precursor of petroleum. Montmorillonite-catalyzed hydrothermal carbonization of microcrystalline cellulose for the production of kerogen-like hydrochar under mild conditions was investigated. It was revealed that the hydrothermal carbonization of microcrystalline cellulose alone resulted in hydrochar with type III kerogen-like structure, whereas in the presence of montmorillonite, the hydrothermal carbonization of microcrystalline cellulose yielded a hydrochar-mineral complex, of which the isolated organic fraction was oil-prone type II kerogen-like structure. Results suggested that further improved montmorillonite-aided biomass conversion to more oil-prone kerogen-like solid products could be an alternative efficient route to obtain biofuel and chemicals
    corecore