6,774 research outputs found

    On the frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    Full text link
    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence with radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 muHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main-sequence solar-like stars, the F-star HD49933, and the young 1-Gyr-old solar analog KIC10644253, although with different amplitudes of the shifts of about 2 muHz and 0.5 muHz respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with already known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l=0 and l=1 modes individually. Given the quality of the data, the results could indicate that a different physical source of perturbation than in the Sun is dominating in this sample of solar-like stars.Comment: Accepted for publication in A&

    Modeling dust emission in PN IC 418

    Full text link
    We investigated the infrared (IR) dust emission from PN IC 418, using a detailed model controlled by a previous determination of the stellar properties and the characteristics of the photoionized nebula, keeping as free parameters the dust types, amounts and distributions relative to the distance of the central star. The model includes the ionized region and the neutral region beyond the recombination front (Photodissociation region, or PDR), where the [OI] and [CII] IR lines are formed. We succeeded in reproducing the observed infrared emission from 2 to 200~\mm. The global energy budget is fitted by summing up contributions from big grains of amorphous carbon located in the neutral region and small graphite grains located in the ionized region (closer to the central star). Two emission features seen at 11.5 and 30~\mm are also reproduced by assuming them to be due to silicon carbide (SiC) and magnesium and iron sulfides (Mgx_xFe1x_{1-x}S), respectively. For this, we needed to consider ellipsoidal shapes for the grains to reproduce the wavelength distribution of the features. Some elements are depleted in the gaseous phase: Mg, Si, and S have sub-solar abundances (-0.5 dex below solar by mass), while the abundance of C+N+O+Ne by mass is close to solar. Adding the abundances of the elements present in the dusty and gaseous forms leads to values closer to but not higher than solar, confirming that the identification of the feature carriers is plausible. Iron is strongly depleted (3 dex below solar) and the small amount present in dust in our model is far from being enough to recover the solar value. A remaining feature is found as a residue of the fitting process, between 12 and 25~\mm, for which we do not have identification.Comment: Accepted for publication in Astronomy & Astrophysics. V2: adding reference

    Gas and dust from solar metallicity AGB stars

    Get PDF
    We study the asymptotic giant branch (AGB) evolution of stars with masses between 1 M8.5 M1~M_{\odot} - 8.5~M_{\odot}. We focus on stars with a solar chemical composition, which allows us to interpret evolved stars in the Galaxy. We present a detailed comparison with models of the same chemistry, calculated with a different evolution code and based on a different set of physical assumptions. We find that stars of mass 3.5 M\ge 3.5~M_{\odot} experience hot bottom burning at the base of the envelope. They have AGB lifetimes shorter than 3×105\sim 3\times 10^5 yr and eject into their surroundings gas contaminated by proton-capture nucleosynthesis, at an extent sensitive to the treatment of convection. Low mass stars with 1.5 MM3 M1.5~M_{\odot} \le M \le 3~M_{\odot} become carbon stars. During the final phases the C/O ratio grows to 3\sim 3. We find a remarkable agreement between the two codes for the low-mass models and conclude that predictions for the physical and chemical properties of these stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB phase. The dust produced is also dependent on the mass: low-mass stars produce mainly solid carbon and silicon carbide dust, whereas higher mass stars produce silicates and alumina dust. Possible future observations potentially able to add more robustness to the present results are also discussed.Comment: 27 pages, 24 figures; accepted for publication in MNRA

    A test for asymptotic giant branch evolution theories: Planetary Nebulae in the Large Magellanic Cloud

    Get PDF
    We used a new generation of asymptotic giant branch (AGB) stellar models that include dust formation in the stellar winds to find the links between evolutionary models and the observed properties of a homogeneous sample of Large Magellanic Cloud (LMC) planetary nebulae (PNe). Comparison between the evolutionary yields of elements such as CNO and the corresponding observed chemical abundances is a powerful tool to shed light on evolutionary processes such as hot bottom burning (HBB) and third dredge-up (TDU). We found that the occurrence of HBB is needed to interpret the nitrogen-enriched (log(N/H)+12>8) PNe. In particular, N-rich PNe with the lowest carbon content are nicely reproduced by AGB models of mass M >=6 Mo, whose surface chemistry reflects the pure effects of HBB. PNe with log(N/H)+12<7.5 correspond to ejecta of stars that have not experienced HBB, with initial mass below about 3 Mo. Some of these stars show very large carbon abundances, owing to the many TDU episodes experienced. We found from our LMC PN sample that there is a threshold to the amount of carbon accumulated at AGB surfaces, log(C/H)+12<9. Confirmation of this constraint would indicate that, after the C-star stage is reached,AGBs experience only a few thermal pulses, which suggests a rapid loss of the external mantle, probably owing to the effects of radiation pressure on carbonaceous dust particles present in the circumstellar envelope. The implications of these findings for AGB evolution theories and the need to extend the PN sample currently available are discussed.Comment: 12 pages, 4 figures, 1 table, accepted for publication in MNRAS (2015 July 13; in original form 2015 June 9
    corecore