37,191 research outputs found

    On the bar pattern speed determination of NGC 3367

    Full text link
    An important dynamic parameter of barred galaxies is the bar pattern speed. Among several methods that are used for the determination of the pattern speed the Tremaine-Weinberg method has the advantage of model independency and accuracy. In this work we apply the method to a simulated bar including gas dynamics and study the effect of 2D spectroscopy data quality on robustness of the method. We added a white noise and a Gaussian random field to the data and measured the corresponding errors in the pattern speed. We found that a signal to noise ratio in surface density ~5 introduces errors of ~20% for the Gaussian noise, while for the white noise the corresponding errors reach ~50%. At the same time the velocity field is less sensitive to contamination. On the basis of the performed study we applied the method to the NGC 3367 spiral galaxy using H{\alpha} Fabry-Perot interferometry data. We found for the pattern speed 43 \pm 6 km/s/kpc for this galaxy.Comment: Accepted for publication in ApJ. 16 pages, 16 figure

    Pair Creation of Dilaton Black Holes in Extended Inflation

    Get PDF
    Dilatonic Charged Nariai instantons mediate the nucleation of black hole pairs during extended chaotic inflation. Depending on the dilaton and inflaton fields, the black holes are described by one of two approximations in the Lorentzian regime. For each case we find Euclidean solutions that satisfy the no boundary proposal. The complex initial values of the dilaton and inflaton are determined, and the pair creation rate is calculated from the Euclidean action. Similar to standard inflation, black holes are abundantly produced near the Planck boundary, but highly suppressed later on. An unusual feature we find is that the earlier in inflation that the dilatonic black holes are created, the more highly charged they can be.Comment: 23 pages, LaTeX, 6 figures; submitted to Phys. Rev.

    On the frequency dependence of p-mode frequency shifts induced by magnetic activity in Kepler solar-like stars

    Full text link
    The variations of the frequencies of the low-degree acoustic oscillations in the Sun induced by magnetic activity show a dependence with radial order. The frequency shifts are observed to increase towards higher-order modes to reach a maximum of about 0.8 muHz over the 11-yr solar cycle. A comparable frequency dependence is also measured in two other main-sequence solar-like stars, the F-star HD49933, and the young 1-Gyr-old solar analog KIC10644253, although with different amplitudes of the shifts of about 2 muHz and 0.5 muHz respectively. Our objective here is to extend this analysis to stars with different masses, metallicities, and evolutionary stages. From an initial set of 87 Kepler solar-like oscillating stars with already known individual p-mode frequencies, we identify five stars showing frequency shifts that can be considered reliable using selection criteria based on Monte Carlo simulations and on the photospheric magnetic activity proxy Sph. The frequency dependence of the frequency shifts of four of these stars could be measured for the l=0 and l=1 modes individually. Given the quality of the data, the results could indicate that a different physical source of perturbation than in the Sun is dominating in this sample of solar-like stars.Comment: Accepted for publication in A&

    A model for conservative chaos constructed from multi-component Bose-Einstein condensates with a trap in 2 dimensions

    Full text link
    To show a mechanism leading to the breakdown of a particle picture for the multi-component Bose-Einstein condensates(BECs) with a harmonic trap in high dimensions, we investigate the corresponding 2-dd nonlinear Schr{\"o}dinger equation (Gross-Pitaevskii equation) with use of a modified variational principle. A molecule of two identical Gaussian wavepackets has two degrees of freedom(DFs), the separation of center-of-masses and the wavepacket width. Without the inter-component interaction(ICI) these DFs show independent regular oscillations with the degenerate eigen-frequencies. The inclusion of ICI strongly mixes these DFs, generating a fat mode that breaks a particle picture, which however can be recovered by introducing a time-periodic ICI with zero average. In case of the molecule of three wavepackets for a three-component BEC, the increase of amplitude of ICI yields a transition from regular to chaotic oscillations in the wavepacket breathing.Comment: 5 pages, 4 figure
    • …
    corecore