4 research outputs found

    Alzheimer’s disease and green tea: Epigallocatechin-3-Gallate as a modulator of inflammation and oxidative stress

    Full text link
    Alzheimer’s disease (AD) is the most common cause of dementia, characterised by a marked decline of both memory and cognition, along with pathophysiological hallmarks including amyloid beta peptide (AÎČ) accumulation, tau protein hyperphosphorylation, neuronal loss and inflammation in the brain. Additionally, oxidative stress caused by an imbalance between free radicals and antioxidants is considered one of the main risk factors for AD, since it can result in protein, lipid and nucleic acid damage and exacerbate AÎČ and tau pathology. To date, there is a lack of successful pharmacological approaches to cure or even ameliorate the terrible impact of this disease. Due to this, dietary compounds with antioxidative and anti-inflammatory properties acquire special relevance as potential therapeutic agents. In this context, green tea, and its main bioactive compound, epigallocatechin-3-gallate (EGCG), have been targeted as a plausible option for the modulation of AD. Specifically, EGCG acts as an antioxidant by regulating inflammatory processes involved in neurodegeneration such as ferroptosis and microglia-induced cytotoxicity and by inducing signalling pathways related to neuronal survival. Furthermore, it reduces tau hyperphosphorylation and aggregation and promotes the non-amyloidogenic route of APP processing, thus preventing the formation of AÎČ and its subsequent accumulation. Taken together, these results suggest that EGCG may be a suitable candidate in the search for potential therapeutic compounds for neurodegenerative disorders involving inflammation and oxidative stress, including Alzheimer’s diseas

    What’s in a gene? The outstanding diversity of MAPT

    Full text link
    Tau protein is a microtubule-associated protein encoded by the MAPT gene that carries out a myriad of physiological functions and has been linked to certain pathologies collectively termed tauopathies, including Alzheimer’s disease, frontotemporal dementia, Huntington’s disease, progressive supranuclear palsy, etc. Alternative splicing is a physiological process by which cells generate several transcripts from one single gene and may in turn give rise to different proteins from the same gene. MAPT transcripts have been proven to be subjected to alternative splicing, generating six main isoforms in the central nervous system. Research throughout the years has demonstrated that the splicing landscape of the MAPT gene is far more complex than that, including at least exon skipping events, the use of 3â€Č and 5â€Č alternative splice sites and, as has been recently discovered, also intron retention. In addition, MAPT alternative splicing has been showed to be regulated spatially and developmentally, further evidencing the complexity of the gene’s splicing regulation. It is unclear what would drive the need for the existence of so many isoforms encoded by the same gene, but a wide range of functions have been ascribed to these Tau isoforms, both in physiology and pathology. In this review we offer a comprehensive up-to-date exploration of the mechanisms leading to the outstanding diversity of isoforms expressed from the MAPT gene and the functions in which such isoforms are involved, including their potential role in the onset and development of tauopathies such as Alzheimer’s diseaseThis research received no external fundin

    Mouse and human tau expression in different brain areas

    Full text link
    Background: An increase in tau protein is believed to be necessary for tau aggregation. However, whether this is due to increased expression of the endogenous tau promoter or protein accumulation due to proteostasis failure remains uncertain. Objective: To analyze the expression of GFP protein under endogenous tau promoter across different ages and within different brain areas. Methods: We have measured direct expression of Mapt gene promotor by western blot and immunofluorescence, by means of a commercial tau knock-out mice generated by integrating GFP-encoding cDNA into exon 1 of the Mapt gene. Besides, we have analyzed the MAPT gene expression in human samples. Results: Mapt expression is similar in the cortex, hippocampus, and cerebellum in mice and in human samples although some differences exist between dentate gyrus and CA1 hippocampal areas in mice. Besides, we have analyzed the murine Mapt gene expression during aging (at 2, 6, 12, and 18 moths) and no differences in endogenous tau promoter expression were observed. Conclusion: Our results suggest that Mapt promoter activity is similar in the brain areas studied and, therefore, tau accumulation due to aging is likely due to proteostasis failure rather than occurring at the transcriptional levelWork in the laboratory of JA is funded by grants from the Spanish Ministry of Economy and Competitiveness (PGC-2018-09177-B-100). Work in the laboratory of FH is funded by grants from the Spanish Ministry of Economy and Competitiveness (Ministerio de Economía, Industria y Competitividad, Gobierno de España, PID2020-113204GB-I00) and was co-financed from the Comunidad de Madrid through Structural Funds of the European Union [S2017/BMD-3700 (NEUROMETAB-CM)

    p38 Inhibition Decreases Tau Toxicity in Microglia and Improves Their Phagocytic Function

    Full text link
    Alzheimer’s disease (AD) and other tauopathies are histopathologically characterized by tau aggregation, along with a chronic inflammatory response driven by microglia. Over the past few years, the role of microglia in AD has been studied mainly in relation to amyloid-ÎČ (AÎČ) pathology. Consequently, there is a substantial knowledge gap concerning the molecular mechanisms involved in tau-mediated toxicity and neuroinflammation, thus hindering the development of therapeutic strategies. We previously demonstrated that extracellular soluble tau triggers p38 MAPK activation in microglia. Given the activation of this signaling pathway in AD and its involvement in neuroinflammation processes, here we evaluated the effect of p38 inhibition on primary microglia cultures subjected to tau treatment. Our data showed that the toxic effect driven by tau in microglia was diminished through p38 inhibition. Furthermore, p38 blockade enhanced microglia-mediated tau phagocytosis, as reflected by an increase in the number of lysosomes. In conclusion, these results contribute to our understanding of the functions of p38 in the central nervous system (CNS) beyond tau phosphorylation in neurons and provide further insights into the potential of p38 inhibition as a therapeutic strategy to halt neuroinflammation in tauopathiesOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This research was funded by the Spanish Ministry of Science and Innovation (BES-2015–074405, PGC2018-096177-B-I00) and the Center for Networked Biomedical Research on Neurodegenerative Diseases. Institutional grants from the FundaciĂłn RamĂłn Areces and Banco de Santander are also acknowledged. R. M. M. and M. T. H. are supported by the Helmholtz Association, under the project title “Immunology&Infammation,” project number ZT-002
    corecore