653 research outputs found

    Morpho-kinematic analysis of the point-symmetric, bipolar planetary nebulae Hb 5 and K 3-17, a pathway to poly-polarity

    Full text link
    The kinematics of the bipolar planetary nebulae Hb~5 and K 3-17 are investigated in detail by means of a comprehensive set of spatially resolved high spectral resolution, long-slit spectra. Both objects share particularly interesting characteristics, such as a complex filamentary, rosette-type nucleus, axial point-symmetry and very fast bipolar outflows. The kinematic information of Hb~5 is combined with {\it HST} imagery to construct a detailed 3D model of the nebula using the code SHAPE. The model shows that the large scale lobes are growing in a non-homologous way. The filamentary loops in the core are proven to actually be secondary lobes emerging from what appears to be a randomly punctured, dense, gaseous core and the material that forms the point symmetric structure flows within the lobes with a distinct kinematic pattern and its interaction with the lobes has had a shaping effect on them. Hb~5 and K~3-17 may represent a class of fast evolving planetary nebulae that will develop poly-polar characteristics once the nebular core evolves and expands.Comment: 19 pages, 8 figures. To appear in The Astrophysical Journa

    The outflows and 3D structure of NGC 6337, a planetary nebula with a close binary nucleus

    Get PDF
    NGC 6337 is a member of the rare group of planetary nebulae where a close binary nucleus has been identified. The nebula's morphology and emission line profiles are both unusual, particularly the latter. We present a thorough mapping of spatially resolved, long-slit echelle spectra obtained over the nebula that allows a detailed characterization of its complex kinematics. This information, together with narrow band imagery is used to produce a three dimensional model of the nebula using the code SHAPE. The 3-D model yields a slowly expanding toroid with large density fluctuations in its periphery that are observed as cometary knots. A system of bipolar expanding caps of low ionization are located outside the toroid. In addition, an extended high velocity and tenuous bipolar collimated outflow is found emerging from the core and sharply bending in opposite directions, a behavior that cannot be accounted for by pure magnetic launching and collimation unless the source of the outflow is precessing or rotating, as could be expected from a close binary nucleus.Comment: Accepted for publication in Astrophysical Journa

    Large Scale Flows from Orion-South

    Get PDF
    Multiple optical outflows are known to exist in the vicinity of the active star formation region called Orion-South (Orion-S). We have mapped the velocity of low ionization features in the brightest part of the Orion Nebula, including Orion-S, and imaged the entire nebula with the Hubble Space Telescope. These new data, combined with recent high resolution radio maps of outflows from the Orion-S region, allow us to trace the origin of the optical outflows. It is confirmed that HH 625 arises from the blueshifted lobe of the CO outflow from 136-359 in Orion-S while it is likely that HH 507 arises from the blueshifted lobe of the SiO outflow from the nearby source 135-356. It is likely that redshifted lobes are deflected within the photon dominated region behind the optical nebula. This leads to a possible identification of a new large shock to the southwest from Orion-S as being driven by the redshifted CO outflow arising from 137-408. The distant object HH 400 is seen to have two even further components and these all are probably linked to either HH 203, HH 204, or HH 528. Distant shocks on the west side of the nebula may be related to HH 269. The sources of multiple bright blueshifted Herbig-Haro objects (HH 202, HH 203, HH 204, HH 269, HH 528) remain unidentified, in spite of earlier claimed identifications. Some of this lack of identification may arise from the fact that deflection in radial velocity can also produce a change in direction in the plane of the sky. The best way to resolve this open question is through improved tangential velocities of low ionization features arising where the outflows first break out into the ionized nebula.Comment: Astronomical Journal, in press. Some figures are shown at reduced resolution. A full-resolution version is available at http://ifront.org/wiki/Orion_South_Outflows_Pape

    The remarkable outburst of the highly-evolved post period-minimum dwarf nova SSS J122221.7−311525

    Get PDF
    We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7-311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of 33 d and a very gentle decline with a rate of 0.02 mag d -1 , and it displayed an extended post-outburst decline lasting at least 500 d. Simultaneously with the start of the rapid fading from the superoutburst plateau, the system showed the appearance of a strong near-infrared excess resulting in very red colours, which reached extreme values (B - I ≃ 1.4) about 20 d later. The colours then became bluer again, but it took at least 250 d to acquire a stable level. Superhumps were clearly visible in the light curve from our very first time-resolved observations until at least 420 d after the rapid fading from the superoutburst. The spectroscopic and photometric data revealed an orbital period of 109.80 min and a fractional superhump period excess ≲0.8 per cent, indicating a very low mass ratio q ≲ 0.045. With such a small mass ratio the donor mass should be below the hydrogen-burning minimum mass limit. The observed infrared flux in quiescence is indeed much lower than is expected from a cataclysmic variable with a nearmain- sequence donor star. This strongly suggests a brown-dwarf-like nature for the donor and that SSS J122221.7-311525 has already evolved away from the period minimum towards longer periods, with the donor now extremely dim
    • …
    corecore