66 research outputs found

    The use of straw mulch as a strategy to prevent extreme soil erosion rates in citrus orchard. A Rainfall simulation approach

    Get PDF
    Not only the Sahel (Haregeweyn et al., 2013), the deforested land (Borelli et al., 2013) the chinese Plateau are affected by intense soil erosion rates (Zhao et al., 2013). Soil erosion affect agriculture land (CerdĂ  et al., 2009), and citrus orchards are being seeing as one of the crops with the highest erosion rates due to the managements that avoid the catch crops, weeds or litter. Example of the research carried out on citrus orchards is found in the Mediterranean (CerdĂ  and Jurgensen, 2008; 2009; CerdĂ  et al., 2009a; 2009b; CerdĂ  et al., 2011; 2012) and in China (Wu et al., 1997; Xu et al., 2010; Wang et al., 2011; Wu et al., 2011; Liu et al., 2011; LĂŒ et al., 2011; Xu et al., 2012), and they confirm the non sustainable soil losses measured. The land management in citrus plantations results in soil degradation too (Lu et al., 1997; LĂŒ et al., 2012; Xu et al., 2012). The use of cover crops to reduce the soil losses (Lavigne et al., 2012; Le Bellec et al., 2012) and the use of residues such as dried citrus peel has been found successful. There is a need to find new plants or residues to protect the soils on citrus orchards. Agriculture produces a high amount of residues. The pruning can contribute with a valuable source of nutrients and a good soil protection. The leaves of the trees, and some parts of the plants, once harvest can contribute to reduce the soil losses. Due to the mechanization of the agriculture, and the reduction of the draft animals (mainly horses, mules, donkeys and oxen) the straw is being a residue instead of a resource. The Valencia region is the largest producer of citrus in Europe, and the largest exporter in the world. This citrus production region is located in the eastern cost of Spain where we can find the rice production area of the l’Albufera Lagoon paddy fields, the third largest production region in Spain. This means, a rice production region surrounded by the huge citrus production region. There, the rice straw is not used in the paddy fields after harvesting and the straw is being as a residue that damages the air quality when burnt, the water quality due to the decomposition and the methane production, and is not accepted in the field by the farmers. This is a new problem as few years ago the rice straw was use for animal feeding. Many attempts were developed in the last decade to remove and use the straw to avoid fires and water pollution (Iranzo et al., 2004; Silvestre et al., 2013). Our goal is to test if a residue such as the rice straw can be transformed as a resource: soil erosion control. Straw has been seen as a very efficient to reduce the water losses in agriculture land (GarcĂ­a Moreno et al., 2013), the soil losses in fire affected land (Robichaud et al., 2013a; 2013b; Fernandez and Vega, 2014), and soil properties (GarcĂ­a Orenes et al., 2009; 2010; JordĂĄn et al., 2010; GarcĂ­a Orenes 2012). Rainfall simulations under 55 mm h-1 rainfall intensity during one hour on 0,25 m2 plots were carried out on plots paired plots: bare and covered with straw. The plots covered with straw had different straw mulch cover: from 10 to 100 % cover and from 0,005 g m2 to 300 g m2. The results show a positive effect of the straw cover that show an exponential relation between the straw cover and weight with the sediment yield. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE supported this research

    The burn severity and plant recovery relationship affect the biological and chemical soil properties of Pinus halepensis Mill. stands in the short and midterms after wildfire

    Get PDF
    In the Mediterranean Basin, changes in climate and fire regime (increased recurrence and severity) reduce ecosystem services after wildfires by increasing soil degradation and losses in plant diversity. Our study was a biological approach to relate soil properties to vegetation recovery and burn severity. We focused our study on the natural recovery of the soil-plant interphase in Pinus halepensis Mill. forests located in the SE of Iberian Peninsula, a semiarid climate. We included some chemical properties 3 years after fire (available phosphorus (P) and soil organic carbon (Corg), among others), and biological soil indicators 3 and 5 years after fire (i.e. basal soil respiration (BSR), microbial biomass carbon (Cmic), carbon mineralization coefficient (Cmineral), metabolic quotient (qCO2) and microbial quotient (Cmic:Corg)). We analyzed the activity of three different enzymes: urease (UR), phosphatase (PHP) and ÎČ-glucosidase (GLU). The changes in most chemical properties were ephemeral, but P and Corg showed higher values in burned areas, and the highest were found for low-moderate severity. Plant recovery was the triggering factor for the recovery of Corg and biological soil function. Burn severity and time after fire influenced Cmic and the Cmic:Corg, which were higher for moderate-high severity 3 years later, but were below the unburned values 5 years after fire. The microbial activities of GLU and UR were recovered in burned areas 5 years after fire. The PHP values lowered according to higher burn severity and time after fire. The soil ecological trends obtained by a principal component analysis revealed a relationship linking GLU, BSR and qCO2 that explained soil response to burn severity. PHP, Cmic and Cmic:Corg explained most of the variability related to time after fire. Our results provide insights into how burn severity, in Mediterranean fire-prone Aleppo pine stands, modulated the natural plant recovery linked to soil biochemical and microbiological response to fire. High burn severity limited natural vegetation recovery, and both reduced biological soil functionality. This knowledge can be implemented in post-fire planning to apply post-fire management (for mitigation and restoration) in which the “no intervention” tool should be contemplated. These findings provide information to be applied in adaptive forest management to improve the resilience of vulnerable ecosystems and to reduce burn severity in future fire events.This study was supported by a research award provided by the Instituto Estudios Albacetenses (IEA2016-Daniel Moya) and funds provided to the Forest Ecology Research Group by the University Castilla-La Mancha.The authors also thank the Spanish Institute for Agricultural and Food Research and Technology (INIA) for the funding awarded through National Research Projects GEPRIF (RTA2014-00011-C06), POSTFIRE_CARE (CGL2016-75178-C2-1-R) financed by the Spanish Research Agency (AIE), and the European Union for European Funding for Regional Development (FEDER)

    Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest

    Get PDF
    Natural soil water repellency is a property that has already been observed in forest soils and is characterized by its patchy distribution. There are many factors involved in its development. In this work, we have studied a large number of chemical and biological factors under the influence of different plant species (. Pinus halepensis, Quercus rotundifolia, Cistus albidus and Rosmarinus officinalis) to learn which has the greatest responsibility for its presence and persistence in the top-soil layer. We observed strong and significant correlations between ergosterol, glomalin related soil protein (GRSP), extractable lipids, soil organic matter (SOM) content and water repellency (WR). Our results suggested lipid fraction as the principal factor. Moreover, apart from Pinus, fungal biomass seems to be also related to the SOM content. Soil WR found under Pinus appears to be the most influenced by fungi. Quality of SOM, to be precise, lipid fraction could be responsible for WR and its relationship with fungal activity.Ministerio de EconomĂ­a y Competitividad CGL2010- 21670-C02-01, CGL2012-38655-C04-0

    Assessment of promising agricultural management practices

    Get PDF
    iSQAPER project - Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience - aims to develop an app to advise farmers on selecting the best AgricultureManagement Practice (AMPs) to improve soil quality. For this purpose, a soil quality index has to be developed to account for the changes in soil quality as impacted by the implementation of the AMPs. Some promising AMPs have been suggested over the time to prevent soil degradation. These practices have been randomly adopted by farmers but which practices are most used by farmers and where they are mostly adopted remains unclear. This study is part of the iSQAPER project with the specific aims: 1) map the current distribution of previously selected 18 promising AMPs in several pedo-climatic regions and farming systems located in ten and four study site areas (SSA) along Europe and China, respectively; and 2) identify the soil threats occurring in those areas. In each SSA, farmers using promising AMP'swere identified and questionnaires were used to assess farmer's perception on soil threats significance in the area. 138 plots/farms using 18 promising AMPs, were identified in Europe (112) and China (26).Results show that promising AMPs used in Europe are Crop rotation (15%), Manuring & Composting (15%) and Min-till (14%), whereas in China areManuring & Composting (18%), Residuemaintenance (18%) and Integrated pest and disease management (12%). In Europe, soil erosion is the main threat in agricultural Mediterranean areas while soilborne pests and diseases is more frequent in the SSAs from France and The Netherlands. In China, soil erosion, SOM decline, compaction and poor soil structure are among the most significant. This work provides important information for policy makers and the development of strategies to support and promote agricultural management practices with benefits for soil quality.L. BarĂŁo and C. Ferreira were supported by the grants SFRH/BPD/115681/2016 and SFRH/BPD/120093/2016, respectively, from the Portuguese Fundação para a CiĂȘncia e TecnologiaiSQAPER is funded by the European Union's Horizon 2020 Programme for research & innovation under grant agreement no 635750the Chinese Ministry of Science and Technology (grant nr:2016YFE011270)the Chinese Academy of Sciences (grant nr:16146KYSB20150001)and the Swiss State Secretariat for Education, Research and Innovation. Contract: 15.0170-1

    The impact of post-fire salvage logging on microbial nitrogen cyclers in Mediterranean forest soil

    Get PDF
    Forest fires are a regular occurrence in the Mediterranean basin. High severity fires and post-fire management can affect biological, chemical and physical properties of soil, including the composition and abundance of soil microbial communities. Salvage logging is a post-fire management strategy, which involves the removal of burntwood fromland after a fire. The main objective of thiswork was to evaluate the impact of post-fire salvage logging and microaggregation on soil microbial communities, specifically on the abundance of nitrogen cyclers and, thus, the potential of the soil for microbial nitrogen cycling. The abundance of nitrogen cyclers was assessed by quantification of microbial nitrogen cycling genes in soil DNA, including nifH (involved in nitrogen fixation), nirS/K and nosZ (involved in denitrification), amoA-B and amoA-Arch (involved in bacterial and archaeal nitrification, respectively). It was demonstrated that salvage logging reduced bacterial load post-fire when compared to tree retention control and resulted in significant changes to the abundance of functional bacteria involved in nitrogen cycling. Microbial gene pools involved in various stages of the nitrogen cycle were larger in control soil than in soil subjected to post-fire salvage logging and were significantly correlated with organicmatter, available phosphorous, nitrogen and aggregate stability. The microaggregate fraction of the soil,which has been associated with greater organic carbon, was shown to be a hotspot for nitrogen cyclers particularly under salvage logging. The impact of post-fire management strategies on soil microbial communities needs to be considered in relation to maintaining ecosystem productivity, resilience and potential impact on climate change.This work was supported by funding from Salvador de Madariaga Program of MECD of Spain for the mobility of researchers and by the University of New England, Australia.The project was also supported by the project “POSTFIRE_CARE” - Ref.: CGL2016-75178-C2-1-R [AEI/ FEDER, UE],financed by the Spanish Research Agency (AIE) and the “European Union through European Funding for Regional Development (FEDER)

    Manuring effects on visual soil quality indicators and soil organic matter content in different pedoclimatic zones in Europe and China

    No full text
    The intensification of agricultural practices to increase food and feed outputs is a pressing challenge causing deterioration of soil quality and soil functions. Such a challenge demands provision of empirical evidence to provide context-sensitive guidance on agricultural management practices (AMPs) that may enhance soil quality. The objectives of this study are to identify the most promising AMPs (and their combinations) applied by farmers with the most positive effects on soil quality and to evaluate the sensitivity of the soil quality indicators to the applied AMPs. The effect of selected AMPs on soil quality was assessed using a visual soil assessment tool in a total of 138 pairs of plots spread across 14 study site areas in Europe and China covering representative pedo-climatic zones. The inventory and scoring of soil quality were conducted together with landowners. Results show that 104 pairs show a positive effect of AMPs on soil quality. Higher effects of the AMPs were observed in lower fertile soils (i.e., Podzols and Calcisols) as opposed to higher fertile soils (i.e., Luvisols and Fluvisols). For the single use applications, the AMPs with positive effects were crop rotation; manuring, composting, and no-tillage; followed by organic agriculture and residue maintenance. Cluster analysis showed that the most promising combinations of AMPs with the most positive effects on soil quality are composed of crop rotation, mulching, and min-till. The agreement between scientific skills and empirical knowledge in the field identified by the farmers confirm our findings and ensures their applicability

    Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

    No full text
    The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. These indices represent the balance reached among properties in "steady state" soils. This study was carried out in four study sites from SE Spain irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used
    • 

    corecore