6,509 research outputs found
The June 2012 transit of Venus. Framework for interpretation of observations
Ground based observers have on 5/6th June 2012 the last opportunity of the
century to watch the passage of Venus across the solar disk from Earth. Venus
transits have traditionally provided unique insight into the Venus atmosphere
through the refraction halo that appears at the planet outer terminator near
ingress/egress. Much more recently, Venus transits have attracted renewed
interest because the technique of transits is being successfully applied to the
characterization of extrasolar planet atmospheres. The current work
investigates theoretically the interaction of sunlight and the Venus atmosphere
through the full range of transit phases, as observed from Earth and from a
remote distance. Our model predictions quantify the relevant atmospheric
phenomena, thereby assisting the observers of the event in the interpretation
of measurements and the extrapolation to the exoplanet case. Our approach
relies on the numerical integration of the radiative transfer equation, and
includes refraction, multiple scattering, atmospheric extinction and solar limb
darkening, as well as an up to date description of the Venus atmosphere. We
produce synthetic images of the planet terminator during ingress/egress that
demonstrate the evolving shape, brightness and chromaticity of the halo.
Guidelines are offered for the investigation of the planet upper haze from
vertically-unresolved photometric measurements. In this respect, the comparison
with measurements from the 2004 transit appears encouraging. We also show
integrated lightcurves of the Venus/Sun system at various phases during transit
and calculate the respective Venus-Sun integrated transmission spectra. The
comparison of the model predictions to those for a Venus-like planet free of
haze and clouds (and therefore a closer terrestrial analogue) complements the
discussion and sets the conclusions into a broader perspective.Comment: 14 pages; 14 figures; Submitted on 02/06/2012; A&A, accepted for
publication on 30/08/201
Glory revealed in disk-integrated photometry of Venus
Context. Reflected light from a spatially unresolved planet yields unique
insight into the overall optical properties of the planet cover. Glories are
optical phenomena caused by light that is backscattered within spherical
droplets following a narrow distribution of sizes; they are well known on Earth
as localised features above liquid clouds. Aims. Here we report the first
evidence for a glory in the disk-integrated photometry of Venus and, in turn,
of any planet. Methods. We used previously published phase curves of the planet
that were reproduced over the full range of phase angles with model predictions
based on a realistic description of the Venus atmosphere. We assumed that the
optical properties of the planet as a whole can be described by a uniform and
stable cloud cover, an assumption that agrees well with observational evidence.
Results. We specifically show that the measured phase curves mimic the
scattering properties of the Venus upper-cloud micron-sized aerosols, also at
the small phase angles at which the glory occurs, and that the glory contrast
is consistent with what is expected after multiple scattering of photons. In
the optical, the planet appears to be brighter at phase angles of 11-13 deg
than at full illumination; it undergoes a maximum dimming of up to 10 percent
at phases in between. Conclusions. Glories might potentially indicate spherical
droplets and, thus, extant liquid clouds in the atmospheres of exoplanets. A
prospective detection will require exquisite photometry at the small
planet-star separations of the glory phase angles.Comment: In press. Astronomy & Astrophysics. Letter to the Editor; 201
Coupling of morphology to surface transport in ion-beam irradiated surfaces. I. Oblique incidence
We propose and study a continuum model for the dynamics of amorphizable
surfaces undergoing ion-beam sputtering (IBS) at intermediate energies and
oblique incidence. After considering the current limitations of more standard
descriptions in which a single evolution equation is posed for the surface
height, we overcome (some of) them by explicitly formulating the dynamics of
the species that transport along the surface, and by coupling it to that of the
surface height proper. In this we follow recent proposals inspired by
``hydrodynamic'' descriptions of pattern formation in aeolian sand dunes and
ion-sputtered systems. From this enlarged model, and by exploiting the
time-scale separation among various dynamical processes in the system, we
derive a single height equation in which coefficients can be related to
experimental parameters. This equation generalizes those obtained by previous
continuum models and is able to account for many experimental features of
pattern formation by IBS at oblique incidence, such as the evolution of the
irradiation-induced amorphous layer, transverse ripple motion with non-uniform
velocity, ripple coarsening, onset of kinetic roughening and other.
Additionally, the dynamics of the full two-field model is compared with that of
the effective interface equation.Comment: 23 pages, 14 figures. Movies of figures 6, 7, and 8 available at
http://gisc.uc3m.es/~javier/Movies
The impact of the Kasatochi eruption on the Moon's illumination during the August 2008 lunar eclipse
The Moon's changeable aspect during a lunar eclipse is largely attributable
to variations in the refracted unscattered sunlight absorbed by the terrestrial
atmosphere that occur as the satellite crosses the Earth's shadow. The
contribution to the Moon's aspect from sunlight scattered at the Earth's
terminator is generally deemed minor. However, our analysis of a published
spectrum of the 16 August 2008 lunar eclipse shows that diffuse sunlight is a
major component of the measured spectrum at wavelengths shorter than 600 nm.
The conclusion is supported by two distinct features, namely the spectrum's
tail at short wavelengths and the unequal absorption by an oxygen collisional
complex at two nearby bands. Our findings are consistent with the presence of
the volcanic cloud reported at high northern latitudes following the 7-8 August
2008 eruption in Alaska of the Kasatochi volcano. The cloud both attenuates the
unscattered sunlight and enhances moderately the scattered component, thus
modifying the contrast between the two contributions.Comment: Accepted for publication in Geophysical Research Letter
- …