70 research outputs found

    Programa base para el desarrollo de la atención y mejora de la conducta: inteligencia emocional en el aula desde el paradigma cuántico

    Get PDF
    El presente documento trata de mostrar el trabajo de investigación basado en el enfoque científico-cuántico y su aplicación en el ámbito educativo, así como su repercusión y efecto transformador tanto a nivel individual y social. A través de la elaboración y aplicación de un programa que se fundamenta en el paradigma de la Pedagogía Cuántica, de la Pedagogía Consciente, y que forma parte del ideario de Escuela con Alma. Para su aplicación en el aula hemos integrado los avances científico-filosóficos actuales con las prácticas de desarrollo del autoconocimiento, de la concentración, y la empatía, que las principales culturas antiguas nos han legado, en un proyecto didáctico enfocado a la disminución de la conflictividad en el centro escolar, a la mejora en el rendimiento académico, al incremento de la salud y bienestar de la comunidad educativa, así como a la disminución del absentismo escolar: Programa Base para el Desarrollo de la Atención y Mejora de la Conducta (PBDAMC)

    Searching for partial Hadamard matrices

    Get PDF
    Three algorithms looking for pretty large partial Hadamard ma- trices are described. Here “large” means that hopefully about a third of a Hadamard matrix (which is the best asymptotic result known so far, [8]) is achieved. The first one performs some kind of local exhaustive search, and consequently is expensive from the time consuming point of view. The second one comes from the adaptation of the best genetic algorithm known so far searching for cliques in a graph, due to Singh and Gupta [21]. The last one consists in another heuristic search, which prioritizes the required processing time better than the final size of the partial Hadamard matrix to be obtained. In all cases, the key idea is characterizing the adjacency properties of vertices in a particular subgraph Gt of Ito’s Hadamard Graph (4t) [18], since cliques of order m in Gt can be seen as (m + 3) × 4t partial Hadamard matrices.Ministerio de Ciencia e Innovación MTM2008-06578Junta de Andalucía FQM-016Junta de Andalucía P07-FQM-0298

    ACS Searching for D4t-Hadamard Matrices

    Get PDF
    An Ant Colony System (ACS) looking for cocyclic Hadamard matrices over dihedral groups D4t is described. The underlying weighted graph consists of the rooted trees described in [1], whose vertices are certain subsets of coboundaries. A branch of these trees defines a D4t- Hadamard matrix if and only if two conditions hold: (i) Ii = i − 1 and, (ii) ci = t, for every 2 ≤ i ≤ t, where Ii and ci denote the number of ipaths and i-intersections (see [3] for details) related to the coboundaries defining the branch. The pheromone and heuristic values of our ACS are defined in such a way that condition (i) is always satisfied, and condition (ii) is closely to be satisfied.Ministerio de Ciencia e Innovación MTM2008-06578Junta de Andalucía FQM–296Junta de Andalucía P07-FQM-0298

    GA Based Robust Blind Digital Watermarking

    Get PDF
    A genetic algorithm based robust blind digital watermarking scheme is presented. The experimental results show that our scheme keeps invisibility, security and robustness more likely than other proposals in the literature, thanks to the GA pretreatment.Junta de Andalucía FQM-01

    A Mixed Heuristic for Generating Cocyclic Hadamard Matrices

    Get PDF
    A way of generating cocyclic Hadamard matrices is described, which combines a new heuristic, coming from a novel notion of fitness, and a peculiar local search, defined as a constraint satisfaction problem. Calculations support the idea that finding a cocyclic Hadamard matrix of order 4 · 47 might be within reach, for the first time, progressing further upon the ideas explained in this work.Junta de Andalucía FQM-01

    Generating binary partial Hadamard matrices

    Get PDF
    This paper deals with partial binary Hadamard matrices. Although there is a fast simple way to generate about a half (which is the best asymptotic bound known so far, see de Launey (2000) and de Launey and Gordon (2001)) of a full Hadamard matrix, it cannot provide larger partial Hadamard matrices beyond this bound. In order to overcome such a limitation, we introduce a particular subgraph Gt of Ito’s Hadamard Graph Δ(4t) (Ito, 1985), and study some of its properties,which facilitates that a procedure may be designed for constructing large partial Hadamard matrices. The key idea is translating the problem of extending a given clique in Gt into a Constraint Satisfaction Problem, to be solved by Minion (Gent et al., 2006). Actually, iteration of this process ends with large partial Hadamard matrices, usually beyond the bound of half a full Hadamard matrix, at least as our computation capabilities have led us thus far

    On Cocyclic Hadamard Matrices over Goethals-Seidel Loops

    Get PDF
    About twenty-five years ago, Horadam and de Launey introduced the cocyclic development of designs, from which the notion of cocyclic Hadamard matrices developed over a group was readily derived. Much more recently, it has been proved that this notion may naturally be extended to define cocyclic Hadamard matrices developed over a loop. This paper delves into this last topic by introducing the concepts of coboundary, pseudocoboundary and pseudococycle over a quasigroup, and also the notion of the pseudococyclic Hadamard matrix. Furthermore, Goethals-Seidel loops are introduced as a family of Moufang loops so that every Hadamard matrix of Goethals-Seidel type (which is known not to be cocyclically developed over any group) is actually pseudococyclically developed over them. Finally, we also prove that, no matter if they are pseudococyclic matrices, the usual cocyclic Hadamard test is unexpectedly applicable.Junta de Andalucía FQM-01

    Generating partial Hadamard matrices as solutions to a Constraint Satisfaction Problem characterizing cliques

    Get PDF
    A procedure is described looking for partial Hadamard matrices, as cliques of a particular subgraph Gt of Ito’s Hadamard Graph Δ(4t) [9]. The key idea is translating the problem of extending a given clique Cm to a larger clique of size m+ 1 in Gt, into a constraint satisfaction problem, and look for a solution to this problem by means of Minion [6]. Iteration of this process usually ends with a large partial Hadamard matrix.Junta de Andalucía FMQ-01
    corecore