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Abstract: About twenty-five years ago, Horadam and de Launey introduced the cocyclic development
of designs, from which the notion of cocyclic Hadamard matrices developed over a group was readily
derived. Much more recently, it has been proved that this notion may naturally be extended to
define cocyclic Hadamard matrices developed over a loop. This paper delves into this last topic by
introducing the concepts of coboundary, pseudocoboundary and pseudococycle over a quasigroup,
and also the notion of the pseudococyclic Hadamard matrix. Furthermore, Goethals-Seidel loops
are introduced as a family of Moufang loops so that every Hadamard matrix of Goethals-Seidel type
(which is known not to be cocyclically developed over any group) is actually pseudococyclically
developed over them. Finally, we also prove that, no matter if they are pseudococyclic matrices,
the usual cocyclic Hadamard test is unexpectedly applicable.
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1. Introduction

A (binary) Hadamard matrix is a square matrix H with entries ±1 whose row (equivalently,
column) vectors are pairwise orthogonal. It may be readily checked that every Hadamard matrix must
have order 1, 2 or a multiple of 4, as soon as three rows must be pairwise orthogonal. Surprisingly,
no other restrictions on the order of a Hadamard matrix are known. Actually, it is conjectured that a
Hadamard matrix exists for every order multiple of 4. This is the century-old Hadamard Conjecture.

About twenty-five years ago, the use of cocycles and cocyclic matrices was introduced by
Horadam and de Launey as a part of a theory of development of designs [1]. Furthermore,
they showed [2] that the cocyclic framework could provide a structural approach in order to resolve
the Hadamard Conjecture. This idea is currently supported by the fact that many known constructions
of Hadamard matrix families have been shown to be cocyclic, as, for instance, Sylvester matrices,
Paley matrices, Williamson matrices or Ito’s type Q matrices (see, for instance, [3–8]). On the other
hand, two of the most prolific of these families have actually been shown to fail to be cocyclic [6].
Namely, the family of two-circulant core Hadamard matrices [9] and the so-called Goethals-Seidel
arrays [10], which are related in turn with supplementary difference sets [11]. This paper figures out
a new approach to deal with a cocyclic development of Goethals-Seidel arrays, not over a group,
but over a certain family of Moufang loops, for positive integers t ≥ 1. This is a particular case of
the more general theory, which has recently been proved. That is, the notion of cocyclic matrix may
naturally be extended to cover quasigroups [12].
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While the study of quasigroups may be dated back at least to Euler’s work on orthogonal Latin
squares, as the years went by, the theory of quasigroups was somehow banished by the development of
the theory of groups. It is worthwhile noting, in particular, that a well-established cohomology theory
for groups exists from the mid-1940s, by means of the seminal works of Eilenberg and Mac Lane [13–15].
Yet, surprisingly, no such theory has been fully developed for quasigroups. However, there are
some remarkable papers on cohomology for loops (see [16–18] and the references therein) and a few
for quasigroups [19,20]. For a brief survey on prospective applications of quasigroups and loops,
and a panoramic of the state of the art, the interested reader is referred to [21–23].

The paper is organized as follows. Some background notions on Hadamard matrices, quasigroups
and cocyclic matrices developed over quasigroups are introduced in Section 2. In Section 3,
we introduce the notion of coboundary over a quasigroup and we prove that certain triples of
elements of a quasigroup over which a Hadamard matrix is cocyclic have to be associative in order
to obtain cocyclic elementary coboundaries. This last fact leads us to introduce both concepts of
pseudocoboundary and pseudococycle over a quasigroup, and also the notion of pseudococyclic
Hadamard matrices. In particular, the existence of pseudococyclic Hadamard matrices over
quasigroups that are not loops is illustrated. Finally, in Section 4, we describe Goethals-Seidel arrays as
pseudococyclic Hadamard matrices. Moreover, even if the cocyclic Hadamard test is shown to be no
longer available for pseudococyclic matrices in general, it is proved that the usual cocyclic Hadamard
test actually still applies on Goethals-Seidel arrays.

2. Preliminaries

Let us review some basic concepts and results on Hadamard matrices, quasigroups and cocyclic
matrices over quasigroups that are used throughout the paper. We refer the reader to [12,24,25] for
more details about these topics.

2.1. Hadamard Matrices

Two matrices with entries ±1 are Hadamard equivalent if they are equal up to permutations
or negation of their rows and columns. This is an equivalence relation among Hadamard matrices,
which we denote ∼H .

One of the most prolific methods for constructing Hadamard matrices is via the so-called
Goethals-Seidel arrays [10], which consist of 4t× 4t-block matrices of the type

A BR CR DR
BR −A RD −RC
CR −RD −A RB
DR RC −RB −A

 , (1)

for A, B, C and D being t× t-circulant matrices and R being the back circulant permutation matrix
having (0, . . . , 0, 1) as its first row. This matrix is Hadamard if

AAT + BBT + CCT + DDT = 4tIt, (2)

where XT denotes the transpose of X ∈ {A, B, C, D} and It denotes the t× t-identity matrix with ones
in its main diagonal, and zeros elsewhere.

Goethals-Seidel arrays are related to certain supplementary difference sets consisting of four
subsets, as soon as one attends to the positions in which negative entries occur at the first row,
in every t × t block. More concretely, given a finite abelian group (G, ·) of order t, four subsets
X1, X2, X3, X4 ⊂ G form a supplementary difference set of parameters (t; k1, k2, k3, k4; λ), for ki = |Xi|,

if, for every g ∈ G \ {1}, there are exactly λ different ordered pairs (h, j) ∈
4⋃

i=1
Xi × Xi such that

hj−1 = g. Consequently, it must be
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4

∑
i=1

ki(ki − 1) = λ(t− 1). (3)

Furthermore, assuming Equation (3), Equation (2) is equivalent to

4

∑
i=1

ki = λ + t. (4)

In particular, taking G = Zt, such a supplementary difference set leads readily to a Goethals-Seidel
array. To this end, the first rows of the matrices A, B, C and D are defined from the subsets X0, X1, X2

and X3 in such a way that the i-th entry of the first row of A (respectively, B, C or D) is −1 if and only
if i− 1 belongs to X0 (respectively, X1, X2 or X3).

There exist several methods for constructing Hadamard matrices of Goethals-Seidel type of
a given order 4t from suitable supplementary difference sets. Thus, for instance:

• Spence [26] proved their existence for t = 1 + q + q2, with q being a prime power, whenever there
exists a cyclic projective plane of order q2 and two supplementary difference sets in a cyclic group
of order t.

• Whiteman [27] proved their existence for t = 2p + 1, with p being a prime and 2p− 1 a prime
power.

• Ðoković [28–32] made use of supplementary difference sets in order to construct Hadamard
matrices of Goethals-Seidel type, for all t ∈ {39, 47, 49, 61, 65, 81, 93, 103, 109, 121, 127, 129, 133, 145,
151, 169, 217, 219, 247, 267, 463}. Together with other authors [33,34], he also dealt with examples
for t ∈ {239, 251, 331, 631}.

In any case, there is still much to do on the subject (see [11] for recent details about this concern).
In general, Goethals-Seidel arrays fail to be cocyclic over a group, as was pointed out in [6].

Recall in this regard that a matrix with entries ±1 is cocyclic over a group (G, ·) if there exists a map
ψ : G× G → {±1} obeying the cocycle equation

ψ(i, j) ψ(i · j, k)ψ(i, j · k) ψ(j, k) = 1, (5)

for all i, j, k ∈ G, so that the matrix under consideration is Hadamard equivalent to the cocyclic matrix
Mψ := (ψ(i, j))i,j∈G. The map ψ is called a cocycle [1,2] over the group.

This notion is somehow more relaxing than those originally termed in [2], where cocyclically
developed matrices of the form (ψ(g, h)φ(gh)) and pure cocyclic matrices of the form (ψ(g, h)) were
distinguished for ψ being a two-cocycle and φ being an arbitrary function. Notice that a cocyclically
developed matrix is Hadamard equivalent to a pure cocyclic matrix.

In the context of Hadamard matrices, the main advantage of cocyclic matrices is that there is
a faster way to check whether they are Hadamard or not, the cocyclic Hadamard test [2]. This method
consists of checking whether the summation of each row of the matrix is zero, except for the first one if
the matrix is normalized (that is, both its first row and first column consist all of ones).

Two matrices with entries ±1 are cocyclically equivalent if they are, respectively, cocyclic with
respect to a pair of cocycles ψ and φ over a group (G, ·), and there exists a map ∂ : G → {±1} such that

φ(i, j) = ∂(i)∂(j)∂(i · j)ψ(i, j), for all i, j ∈ G.

This constitutes an equivalence relation among cocyclic Hadamard matrices, which we denote ∼c.
No known relation exists between ∼c and ∼H . In fact, lying in the same ∼c-class, one may easily find
cocyclic matrices Mψ ∼c Mφ such that the former is Hadamard and the latter is not [2].

Progressing on the ideas and techniques of [3,35,36], a full classification of cocyclic Hadamard
matrices up to order 36 was performed in [37], from which we next reproduce in Table 1 the proportion
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∼H+c of ∼H-classes which have a cocyclic representative over some group. In particular the exact
number of nonequivalent Hadamard matrices of order 32 that was calculated in [38,39] is found.

Table 1. Proportion ∼H+c of ∼H-classes with a cocyclic representative over some group.

order 2 4 8 12 16 20 24 28 32 36
∼H 1 1 1 1 5 3 60 487 13710027 ≥ 3× 106

∼H+c 1 1 1 1 5 3 16 6 100 35

As highlighted in bold, the proportion decreases significantly from order 24, which suggests that
cocyclic matrices developed over groups fail to cover a wide amount of nonequivalent Hadamard
matrices. Actually, this is the main motivation of this paper, which deals with the quasigroup
development theory, expecting that the proportion of ∼H-classes having a cocyclic representative over
some quasigroup is significantly greater than that over groups.

2.2. Quasigroups

A quasigroup [40] of order n is a pair (Q, ·) formed by a finite set Q of n elements that is endowed
with a multiplication · defined so that any two of the three elements i, j, k ∈ Q in the equation i · j = k
determine in a unique way the third element. From here on, the multiplication sign · is removed
from equations whenever there is no risk of confusion. Notice that the multiplication table of every
quasigroup of order n constitutes a Latin square of the same order; that is, an n× n array filled with n
different symbols so that each symbol occurs exactly once in each row and exactly once in each column.
Conversely, every Latin square of order n can be taken as the multiplication table of a quasigroup.

A loop is a quasigroup (Q, ·) with unit element e; that is, such that ie = ei = i, for all i ∈ Q.
Every associative loop is a group. A Moufang loop is a loop satisfying any one of the following
equivalent identities:

(ij)(ki) = i((jk)i),

((ij)i)k = i(j(ik)), (6)

i(j(kj)) = ((ij)k)j.

Every Moufang loop (Q, ·) with unit element e satisfies the inverse property; that is, for each
element i ∈ Q, there exists just one element i−1 ∈ Q such that i−1i = ii−1 = e and i−1(ij) = (ji)i−1 = j,
for all j ∈ Q. In particular, (ij)−1 = j−1i−1 for all i, j ∈ Q.

2.3. Cocyclic Matrices Over Quasigroups

As introduced in [12], a (two-dimensional, binary) cocycle ψ over a quasigroup (Q, ·) of order
4t is a map ψ : Q × Q → {±1} satisfying the cocycle Equation (5), for all i, j, k ∈ Q. Once an
indexing of the elements of Q is chosen, the cocycle ψ is uniquely represented by the cocyclic matrix
Mψ := (ψ(i, j))i,j∈Q. If the matrix Mψ is Hadamard, then the quasigroup (Q, ·) must indeed be a loop
(see [12], theorem 28). The cocyclic Hadamard test also holds in this case (see [12],Theorem 29).

3. Coboundaries and Pseudocoboundaries Over Quasigroups

In the conclusion section of [12], it was briefly commented that the notion of coboundary of groups
cannot be generalized in a natural way for non-associative loops, except for the trivial normalized
coboundary. We start this section by showing that such an assessment was not accurate.

Firstly, similarly to the classical notion over groups [1,2], we introduce here the notion of
coboundary over quasigroups. A cocycle ψ over a quasigroup (Q, ·) is called a coboundary if there
exists a map ∂ : Q→ {±1} such that



Mathematics 2020, 8, 24 5 of 23

ψ(i, j) = ∂(i)∂(j)∂(ij), for all i, j ∈ Q.

Notice that, from the cocycle equation

∂(i(jk)) = ∂((ij)k) must hold for all i, j, k ∈ Q.

Even if this last condition is trivial in case of dealing with groups, this is not so for non-associative
quasigroups. Nevertheless, unlike it was indicated in [12], such a condition does not require the map ∂

to be the trivial normalized function. The following example illustrates this fact.

Example 1. It is known [12] that the following Latin square of order eight constitutes the multiplication table
of a non-associative loop (Q, ·) over which a cocyclic Hadamard matrix exists.

1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7
3 4 1 2 7 8 5 6
4 3 2 1 8 7 6 5
5 6 8 7 3 4 2 1
6 5 7 8 4 3 1 2
7 8 6 5 1 2 4 3
8 7 5 6 2 1 3 4

It can readily be checked that the associative property (ij)k = i(jk) does not hold in this loop in case of being
{i, j, k} ⊂ {5, 6, 7, 8}, but it is satisfied in any other case. Moreover, it can also be checked that, given three
elements i, j, k ∈ {5, 6, 7, 8}, then the set {(ij)k, i(jk)} coincides exactly with either {5, 6} or {7, 8}. Due to this,
every map ∂ : Q → {±1} associated to a coboundary over the loop under consideration must satisfy that
∂(5) = ∂(6) and ∂(7) = ∂(8).
Thus, for instance, the following matrix is cocyclic over our non-associative loop, by means of the coboundary
associated to the map ∂ : Q→ {±1} described by ∂(i) = 1, for all i ∈ {1, 2, 3, 5, 6}, and −1, otherwise.

+ + + + + + + +

+ + − − + + + +

+ − + − − − − −
+ − − + + + + +

+ + − + + − − −
+ + − + − + − −
+ + − + − − − +

+ + − + − − + −


,

where, from here on, the signs + and − represent, respectively, the entries 1 and −1. Notice, however, that this
matrix is not Hadamard. Indeed, from an exhaustive study of cases, it can readily be checked that, whatever the
map ∂ is, there does not exist any coboundary over the loop (Q, ·) determining a cocyclic Hadamard matrix.

Let (Q, ·) be a quasigroup and let h ∈ Q. From here on, let ∂h : Q→ {±1} be the map defined as
∂h(i) = −1, if i = h, and 1, otherwise; and let ψh : Q×Q→ {±1} be the map defined as

ψh(i, j) := ∂h(i)∂h(j)∂h(ij). (7)

We say that a coboundary ψ over a quasigroup (Q, ·) is elementary if there exists an element
h ∈ Q such that ψ = ψh. If this is the case, then the cocycle equation implies that

i(jk) = h⇔ (ij)k = h, for all i, j, k ∈ Q. (8)
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As such, Equation (8) discriminates among potential coboundaries ψh. In order to illustrate this
fact, observe that the map ψh constitutes an elementary coboundary over the non-associative loop
described in Example 1 if and only if h ∈ {1, 2, 3, 4}.

Those maps ψh for which Equation (8) does not hold are also of interest in the quasigroup
development theory (see Section 3). Due to this, we term pseudocoboundaries to such maps.
By extension, we call pseudococycle to any map ψ = (∏h∈H ψh) φ that is obtained as the product
of some pseudocoboundaries ψh, with h ∈ H ⊆ Q, and a cocycle φ, all of them over a given
quasigroup (Q, ·). It is represented by the pseudococyclic matrix Mψ := (ψ(i, j))i,j∈Q. Finally, we call
pseudococyclic Hadamard matrix to any matrix that is Hadamard equivalent to that one defined by
any such pseudococycle. The following example illustrates all these concepts.

Example 2. By definition, the map ψh is a pseudocoboundary over the non-associative loop described in
Example 1, for all h ∈ {5, 6, 7, 8}. If we denote φ the coboundary associated to the map ∂ described in such an
example, then the map ψ = ψ5ψ7φ constitutes a pseudococycle over the mentioned loop. It is represented by the
pseudococyclic matrix 

+ + + + + + + +

+ + − − − − − −
+ − + − − − − −
+ − − + − − − −
+ − + + + + − +

+ − + + + + + −
+ − + + − + − −
+ − + + + − − −


.

In order to illustrate that the map ψ does not satisfy the cocycle equation in general, notice, for example, that

ψ(5, 6) ψ(5 · 6, 7)ψ(5, 6 · 7) ψ(6, 7) = ψ(4, 7)ψ(5, 1) = −1.

Unlike the cocyclic framework, the following example illustrates the existence of pseudococyclic
Hadamard matrices over quasigroups that are not loops.

Example 3. Let us consider the following Latin square and Hadamard matrix of order four.

1 3 2 4
2 1 4 3
3 4 1 2
4 2 3 1

and


+ − − +

+ + − −
+ − + −
+ + + +

 .

The latter is pseudococyclic over the non-associative quasigroup having the former as as multiplication table, by
means of the pseudococycle ψ2. Notice in this regard that the map ∂2 constitutes an elementary pseudocoboundary
over such a quasigroup, because we have, for instance, that (1 · 1) · 3 = 2 6= 3 = 1 · (1 · 3).

Further, the following two examples illustrate that the cocyclic Hadamard test is no longer
available for pseudococyclic matrices.
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Example 4. Let us consider the following Latin square and binary matrix of order eight.

1 2 3 4 5 6 7 8
2 1 5 6 3 4 8 7
3 6 1 7 8 2 4 5
4 5 8 1 2 7 6 3
5 4 2 8 7 1 3 6
6 3 7 2 1 8 5 4
7 8 6 3 4 5 2 1
8 7 4 5 6 3 1 2

and



+ + + + + + + +

+ + − − − − − −
+ − − + + + − −
+ − + − + + − −
+ − + + + − − −
+ − + + − + − −
+ − − − − − − +

+ − − − − − + −


.

The latter is cocyclic over the non-associative loop having the former as multiplication table, by means of a cocycle
φ. Further, it is readily checked that the maps ψ2, ψ3 and ψ7 constitute pseudocoboundaries over such a loop,
because we have, for instance, that (5 · 8) · 4 = 2 6= 7 = 5 · (8 · 4) and (2 · 6) · 8 = 3 6= 6 = 2 · (6 · 8).
In general, there is no relation between the usual cocyclic Hadamard test and the Hadamard character of
a pseudococyclic matrix. In order to illustrate this fact, notice that the pseudococyclic matrix

Mψ2ψ3ψ7φ =



+ + + + + + + +

+ + − + − + − −
+ − − + − + − +

+ + − − − − + +

+ + + + − − − −
+ − + − − + + −
+ − − − + + + −
+ − + − − + − +


satisfies the cocyclic Hadamard test, but it is not Hadamard. On the other hand, the pseudococyclic matrix Mφψ2

satisfies the cocyclic Hadamard test and it is Hadamard.

The following result holds instead of the classical cocyclic Hadamard test.

Lemma 1. Let Mψ = (ψ(i, j))i,j∈Q be the pseudococylic matrix related to a pseudococycle ψ = (∏h∈H ψh) φ

over a quasigroup (Q, ·). If i, j ∈ Q, then the (ij)th and jth rows in the matrix Mψ are orthogonal if and only if

∑
k∈Q

ψ(i, jk) ∏
h∈H

∂h(i(jk))∂h((ij)k) = 0. (9)

Proof. Let i, j ∈ Q. In order to study if ∑k∈Q ψ(ij, k)ψ(j, k) = 0, notice that, for each k ∈ Q,

ψ(ij, k)ψ(j, k) =

(
∏
h∈H

∂h(ij)∂h(k)∂h((ij)k)∂h(j)∂h(k)∂h(jk)

)
φ(ij, k)φ(j, k)

=

(
∏
h∈H

∂h(ij)∂h((ij)k)∂h(j)∂h(jk)

)
φ(ij, k)φ(j, k).

Now, from the cocycle equation, since φ is a cocycle over the quasigroup (Q, ·), we have that
φ(ij, k)φ(j, k) = φ(i, j)φ(i, jk). Further,

ψ(i, j)ψ(i, jk) =

(
∏
h∈H

∂h(i)∂h(j)∂h(ij)∂h(i)∂h(jk)∂h(i(jk))

)
φ(i, j)φ(i, jk)

=

(
∏
h∈H

∂h(j)∂h(ij)∂h(jk)∂h(i(jk))

)
φ(i, j)φ(i, jk).
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Then, the result follows readily from the fact of being

ψ(ij, k)ψ(j, k) = ψ(i, j)ψ(i, jk) ∏
h∈H

∂h(i(jk))∂h((ij)k).

Let us remark that Equation (9) is not necessarily related to the summation of row i in Mψ, as it is
the case in the usual cocyclic framework.

4. An Infinite Family of Pseudococyclic Hadamard Matrices Over Loops: Goethals-Seidel Arrays

In this section, we prove the existence of an infinite family of Moufang loops over which the
family of Goethals-Seidel arrays are pseudococyclic. To this end, for each positive integer t ≥ 1,
let us consider the finite ordered set of elements

GS4t := {e, a, a2, . . . , at−1, b, at−1b, . . . , a2b, ab, c, at−1c, . . . , a2c, ac, d, at−1d, . . . , a2d, ad}.

Next, let us endow the set GS4t with the multiplication · that is described by the
4t × 4t-block matrix 

At← Bt→ Ct→ Dt→
Bt← At→ Dt← Ct←
Ct← Dt← At→ Bt←
Dt← Ct← Bt← At→

 , (10)

where

• At, Bt, Ct and Dt are the t-tuples identities:

At :=(e, a, a2, . . . , at−1), (11)

Bt :=(b, at−1b, . . . , a2b, ab), (12)

Ct :=(c, at−1c, . . . , a2c, ac), (13)

Dt :=(d, at−1d, . . . , a2d, ad); (14)

• X = (xt−1, . . . , x1, xt), for every t-tuple X = (x1, . . . , xt) ∈ {Bt, Ct, Dt}; and
• X→ and X← denote, respectively, the circulant and back-circulant matrices derived from the

corresponding t-tuple X ∈ {At, Bt, Ct, Dt, Bt, Ct, Dt} as first row vector.

It is readily verified that the block matrix so defined is a Latin square of order 4t (see Example 5,
which illustrates the case t = 3), where the elements of both its first row and its first column,
respectively, index the rows and columns of the array. Hence, the pair (GS4t, ·) is a loop having
the element e as unit element. Let us prove that it is indeed a Moufang loop.

Proposition 1. The pair (GS4t, ·) is a Moufang loop, for all positive integer t ≥ 1.

Proof. Notice that every element x ∈ GS4t is of the form amα, where m ∈ Zt := {0, 1, . . . , t − 1}
and α ∈ {e, b, c, d}. Here, we are considering x0 = e and, of course, ex = xe = x, for all x ∈ GS4t.
Then, the following identities hold from Matrix (10). In all of them, the sum of exponents refers to the
addition within the usual cyclic group (Zt,+).

am · (anα) = am+nα, for all α ∈ {e, b, c, d} and m, n ∈ Zt. (15)

(amα) · an = am−nα, for all α ∈ {b, c, d} and m, n ∈ Zt. (16)

(amα) · (anα) = am−n, for all α ∈ {b, c, d}, and m, n ∈ Zt. (17)
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(amα) · (anβ) = a2−m−nγ, where {α, β, γ} = {b, c, d} and m, n ∈ Zt. (18)

A simple study of cases based on the Equations (15)–(18) enables one to ensure that the
loop (GS4t, ·) satisfies all the three Equation (6). In order to illustrate this fact, we show here
a pair of cases:

• If i = am, j = anb and k = asc, then

1.

 (ij)(ki) = (am · anb)(asc · am) = am+nb · as−mc = a2−n−sd.

i((jk)i) = am((anb · asc)am) = am(a2−n−sd · am) = am · a2−n−s−md = a2−n−sd.

2.

 ((ij)i)k = (am · anb)am)asc = (am+nb · am)asc = anb · asc = a2−n−sd.

i(j(ik)) = am(anb(am · asc)) = am(anb · am+sc) = am · a2−n−m−sd = a2−n−sd.

3.

 i(j(kj)) = am(anb(asc · anb)) = am(anb · a2−s−nd) = am · asc = am+sc.

((ij)k)j = ((am · anb)asc)anb = (am+nb · asc)anb = a2−m−n−sd · anb = am+sc.

• If i = amb, j = anb and k = asc, then

1.

 (ij)(ki) = (amb · anb)(asc · amb) = am−n · a2−s−md = a2−n−sd.

i((jk)i) = amb((anb · asc)amb) = amb(a2−n−sd · amb) = amb · an+s−mc = a2−n−sd.

2.

 ((ij)i)k = ((amb · anb)amb)asc = (am−n · amb)asc = a2m−nb · asc = a2−2m+n−sd.

i(j(ik)) = amb(anb(amb · asc)) = amb(anb · a2−m−sd) = amb · am+s−nc = a2−2m+n−sd.

3.

 i(j(kj)) = amb(anb(asc · anb)) = amb(anb · a2−s−nd) = amb · asc = a2−m−sd.

((ij)k)j = ((amb · anb)asc)anb = (am−n · asc)anb = am−n+sc · anb = a2−m−sd.

Remark 1. In light of Equations (15)–(18), notice that the structure beneath the t× t-blocks of Matrix (10) is
that of the group Z2 ×Z2.

It is readily verified that the Moufang loop (GS4t, ·) is a group when t ∈ {1, 2}. Nevertheless,
this is not true for t > 2, in which case the loop (GS4t, ·) is non-associative. Thus, observe for
instance that

a · (b · (a1−mc)) = a2+md 6= amd = (a · b) · (a1−mc), (19)

for any m ∈ Zt. The following result enables one to ensure that the case t > 2 is, however, worthy to
be analyzed. In fact, due to this result, we term the Goethals-Seidel loop to the Moufang loop (GS4t, ·)
when t > 2.

Proposition 2. The Goethals-Seidel array of order 4t is pseudococyclic over (GS4t, ·), for all t > 2.

Proof. Let us prove that, even Goethals-Seidel arrays are not themselves pure pseudococylic, they
are Hadamard equivalent to some pure pseudococyclic matrices. To this end, we first prove that,
for every h ∈ GS4t \ {e}, the map ψh defines a pseudocoboundary over the Moufang loop (GS4t, ·),
with the only exception of those maps related to h = am when t is even. Actually, for even t and
h = am, a straightforward calculation from Equations (15)–(18) shows that ψh satisfies Equation (8).
Consequently, it defines a genuine cocycle over (GS4t, ·). We may, therefore, suppose that t is odd or
h 6= am. Under such assumptions, let us show a triplet of elements i, j, k ∈ GS4t for which Equation (8)
fails to hold.
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• If h = am (and consequently t may be assumed odd), for some m ∈ Zt \ {0}, then

b · (am+1c · ad) = a−m 6= am = (b · am+1c) · ad.

• If h = amb, for some m ∈ Zt, then

a · (c · a1−md) = am+2b 6= amb = (a · c) · a1−md.

• If h = amc, for some m ∈ Zt, then

a · (b · a1−md) = am+2c 6= amc = (a · b) · a1−md.

• If h = amd, for some m ∈ Zt, then

a · (b · a1−mc) = am+2d 6= amd = (a · b) · a1−mc.

Secondly, let us see how the just mentioned pseudocoboundaries are components of
a pseudococycle whose pseudococyclic matrix is the Goethals-Seidel array of order 4t. To this end,
let Mh be the matrix that is obtained by negating both the row and column of the matrix
(ψh(i, j))i,j∈GS4t that are indexed by h. From here on, we denote such row and column as h-row
and h-column, respectively.

From Equation (7), the matrix Mh is of the form of Matrix (10). Moreover, every row i (and column
j) in Mh consists of exactly one negative entry, which is located at position (i, j), for ij = h. Thus, in
particular, the negative entry in the first row of Mh appears at the h-column.

As a consequence, from the formal point of view of the symbols At, Bt, Ct, Dt (up to sign of the
t× t-blocks of Matrix (1), by the moment), Matrix (1) may formally be obtained from the element-wise
product of some matrices Mh, just by permuting the am- and the at−m-rows, for m ∈ Zt \ {0}. We term
H to the set of indexes h of such matrices, which is determined by the positions of the −1 s in the first
row of Matrix (1).

Now, let us consider the following 4t× 4t-matrix with entries ±1 that is formed of t× t-blocks of
constant signs.

S4t :=


+t +t +t +t

+t −t +t −t

+t −t −t +t

+t +t −t −t

 .

Because of the block structure of both S4t and the multiplication table of the Moufang loop (GS4t, ·)
(as we pointed out in Remark 1), checking whether the former is cocyclic over the latter reduces to
check whether the 4× 4 matrix 

+ + + +

+ − + −
+ − − +

+ + − −


is cocyclic over Z2 × Z2, which is actually the case (see [2] for instance). Furthermore, it remains
unchanged under the permutation of any am- and at−m rows, with m 6= 0. Thus, the matrix S4t is
cocyclic by means of some cocycle φ4t over GS4t.

Since we have just considered operations involving both the negation of rows and columns
and the permutation of rows, every Goethals-Seidel array is pseudococylic over the Moufang loop.
This is due to the fact that it is Hadamard equivalent to the pseudococyclic matrix generated by the
pseudococycle ψ : GS4t × GS4t → {±1}, which is defined as
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ψ :=

(
∏
h∈H

ψh

)
φ4t. (20)

Here, the elements of the subset H ⊆ GS4t index those columns of the Goethals-Seidel array
whose first entry is negative, as commented before.

The remainder of this section is devoted to prove that, even if we have just shown that the
Goethals-Seidel arrays are Hadamard equivalent to the pseudococyclic (but not cocyclic) matrices
Mψ of Equation (20), the usual cocyclic Hadamard test actually still applies on these matrices. For the
sake of clarity and a better understanding, we next include a broad sketch of the proof:

• In Lemma 1, we have already shown that checking orthogonality of rows ij and j in the
pseudococyclic matrix Mψ, for ψ as described in Equation (20), reduces to check whether

∑
k∈GS4t

σk(i, j)ψ(i, jk) = 0, (21)

for

σk(i, j) := ∏
h∈H

∂h(i(jk))∂h((ij)k), (22)

where the subset H ⊆ GS4t is determined by the indices of those pseudocoboundaries ∂ψh
defining ψ.

• In particular, those indices k ∈ GS4t satisfying that σk(i, j) = −1 are of interest, since they make the
difference to readily meet the summation of row i in Mψ. In Lemma 2, we show that σk(i, j) = −1
if and only if precisely one element among i(jk) and (ij)k is in H.

• In Lemma 4, we show that these indices are in one to one correspondence with the ends of
certain sequences (h0, . . . , hr) in H (described as maximal (i, j)-walks in Definition 1) so that either
i(jk) = h0 or (ij)k = hr.

• In Proposition 4, we show that these sequences (h0, . . . , hr) are preserved by the left action of i−1

in such a way that, for each ` ∈ {0, . . . , r− 1}, both i−1h` and i−1h`+1 are consecutive components
of another sequence in GS4t.

• Two cases arise, depending on whether ψ(i, jk) = −ψ(i, jk′) (developed in Lemma 5) or
ψ(i, jk) = ψ(i, jk′) (developed through Lemmas 8, 9, and 10). Whichever is the case, every index
k ∈ GS4t with σk(i, j) = −1 is shown to have a uniquely related index k′ ∈ GS4t with σk′(i, j) = −1
and ψ(i, jk) = −ψ(i, jk′).

• As a result, we show in Lemma 12 that Equation (21) is satisfied if and only if the summation of
row i in Mψ is zero, from which Theorem 1 readily follows.

Let us detail separately each one of the previous stages.

Lemma 2. Let i, j, k ∈ GS4t. Then, σk(i, j) = −1 if and only if precisely one element among i(jk) and
(ij)k is in H.

Proof. This is a straightforward consequence from the definition of σk in Equation (22).

Lemma 2 leads us to introduce the notion of (i, j)-path in a subset of a quasigroup, which is
extremely useful for our purposes. In this regard, let (Q, ·) be a quasigroup and let i, j ∈ Q. From here
on, for each element h ∈ Q, let κ

i,j,h
1 and κ

i,j,h
2 , respectively, denote the unique elements (non necessarily

distinct) in Q such that

i(jκi,j,h
1 ) = h = (ij)κi,j,h

2 .
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They are well-defined because of being (Q, ·) a quasigroup. From Equation (8), the map ψh is
an elementary coboundary over the quasigroup (Q, ·) if and only if κ

i,j,h
1 = κ

i,j,h
2 , for all i, j ∈ Q. This

always holds when the quasigroup is associative (that is, a group). From here on, we refer to these
two elements as κh

1 and κh
2 , respectively, whenever there is no risk of confusion about both elements

i, j ∈ Q.

Definition 1. Let (Q, ·) be a quasigroup and let i, j ∈ Q. Then, an (i, j)-path in a subset H ⊆ Q is a sequence
(h0, . . . , hr), where h` ∈ H, for all ` ∈ {0, . . . , r}, and such that κ

h`
2 = κ

h`+1
1 (equivalently, jκh`

2 = i−1h`+1),
for all non-negative integer ` < r. Each one of these components h` is called a link of the (i, j) path.

For the convenience of the reader, even if they may be readily derived from the definition above,
we explicitly give the relation among consecutive links in a path.

Lemma 3. Let (Q, ·) be a quasigroup and let i, j ∈ Q. Given an element h in a subset H ⊆ Q, the potential
links h− and h+ in any (i, j)-path (. . . , h−, h, h+, . . .) in H are

h− := (ij)(j−1(i−1h)) and h+ := i(j((ij)−1h)).

Eventually, it may be of interest noting the length n of an (i, j)-path. In such a case, we use
the notation (i, j)-n-path. Further, paraphrasing the usual notation in Graph Theory, we say that an
(i, j)-path is an (i, j)-cycle when it is closed (that is, κhr

2 = κh0
1 ). Otherwise, we call it an (i, j)-walk.

Finally, we say that an (i, j)-path is maximal if there is no way to extend such a sequence neither to
the left nor to the right. Notice that every subset H ⊆ Q may be partitioned into disjoint maximal
(i, j)-paths. Moreover, the set Q may be partitioned into disjoint (i, j)-cycles. Further, in case of dealing
with a group, all the (i, j)-cycles are of length one, for all i, j ∈ Q. In this last regard, one may consider
the computation of (i, j)-cycles as a way to measure how far a quasigroup is from being a group.

The following example illustrates how (i, j)-cycles may be explicitly constructed.

Example 5. Let us consider the Goethals-Seidel loop (GS12, ·), whose multiplication table is the Latin square

e a a2 b a2b ab c a2c ac d a2d ad
a a2 e ab b a2b ac c a2c ad d a2d
a2 e a a2b ab b a2c ac c a2d ad d
b a2b ab e a a2 a2d d ad a2c c ac

a2b ab b a2 e a d ad a2d c ac a2c
ab b a2b a a2 e ad a2d d ac a2c c
c a2c ac a2d d ad e a a2 a2b b ab

a2c ac c d ad a2d a2 e a b ab a2b
ac c a2c ad a2d d a a2 e ab a2b b
d a2d ad a2c c ac a2b b ab e a a2

a2d ad d c ac a2c b ab a2b a2 e a
ad d a2d ac a2c c ab a2b b a a2 e

.

Let us illustrate the computation of all the (a, b)-cycles in GS12. In order to make it more visual for the reader,
we describe all the steps for computing each (a, b)-cycle (h0, . . . , hr) in GS12 by means of a coloured directed
cycle connecting certain cells of the e-, a-, b- and ab-rows. This directed cycle is defined as follows:

• Firstly, notice that each symbol h` ∈ GS12 within the ab-row is always placed in the same column as
the symbol κ

h`
2 within the e-row, because (ab) · κh`

2 = h`. We represent this relationship in our coloured
directed cycle as a blue arrow from the former to the latter.
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• Secondly, since h`+1 = a(bκ
h`
2 ) (and hence, κ

h`+1
1 = κ

h`
2 ), we add a red arrow from the cell containing the

symbol κ
h`
2 within the e-row to the cell within the b-row that is placed in the same column as the former.

This last cell contains the symbol bκ
h`
2 . Next, we add a green arrow from this last cell to the intersection

between the a-row and the bκ
h`
2 -column. This last cell contains the symbol h`+1.

• Finally, we add a brown arrow from this last cell to that one within the ab-row containing the symbol h`+1.

Due to the Latin square condition and the finiteness of the loop, the output of this procedure is our coloured
directed cycle. Its related (a, b)-cycle is the sequence of symbols in the ab-row appearing in the same order as
they do in the coloured directed cycle. In order to identify such symbols, we colour in cyan the background of the
corresponding cells. Thus, for instance, the (a, b)-cycle containing the element d ∈ GS12 is identified with the
coloured directed cycle that is shown in the following array.

e a a2 b a2b ab c a2c ac d a2d ad
a a2 e ab b a2b ac c a2c ad d a2d

b a2b ab e a a2 a2d d ad a2c c ac

ab b a2b a a2 e ad a2d d ac a2c c

More specifically, if h0 = d, then the non-associative product described in Equation (19) implies that κd
2 = ac.

Now,
a(bκd

2) = a · ad = a2d = h1.

In particular, κa2d
1 = ac. From the multiplication table, we have that κa2d

2 = a2c, and hence,

a(bκa2d
2 ) = a · d = ad = h2.

In particular, κad
1 = a2c. From the multiplication table, we have that κad

2 = c, and hence,

a(bκad
2 ) = a · a2d = d = h0.

Hence, the (a, b)-cycle in GS12 containing the element d is the sequence (d, a2d, ad).
In a similar way, we obtain that the set GS12 may be partitioned into eight (a, b)-cycles: The already mentioned
sequence (d, a2d, ad) and the seven sequences

(e), (a), (a2), (b), (a2b), (ab) and (c, a2c, ac).

The seven coloured directed cycles related to these last (a, b)-cycles are represented in the following arrays.

e a a2 b a2b ab
a a2 e ab b a2b
b a2b ab e a a2

ab b a2b a a2 e

e a a2 a a2b ab
a a2 e ab b a2b
b a2b ab e a a2

ab b a2b a a2 e

e a a2 b a2b ab
a a2 e ab b a2b
b a2b ab e a a2

ab b a2b a a2 e

e a a2 b a2b ab
a a2 e ab b a2b
b a2b ab e a a2

ab b a2b a a2 e
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e a a2 b a2b ab
a a2 e ab b a2b
b a2b ab e a a2

ab b a2b a a2 e

e a a2 b a2b ab
a a2 e ab b a2b
b a2b ab e a a2

ab b a2b a a2 e

e a a2 b a2b ab c a2c ac d a2d ad
a a2 e ab b a2b ac c a2c ad d a2d
b a2b ab e a a2 a2d d ad a2c c ac
ab b a2b a a2 e ad a2d d ac a2c c

Depending on a given subset H ⊆ GS12, these (a, b)-cycles might split onto different maximal (a, b)-walks.
For instance, taking H = {a, c, ac, d} ⊂ GS12, one gets three maximal (a, b)-paths, namely the (a, b)-1-cycle
(a) and the maximal (a, b)-walks (ac, c) and (d).

We now persevere in the analysis of Equation (21). As pointed out in Lemma 2, we focus on the
addends corresponding to those indices k ∈ GS4t such that σk(i, j) = −1.

Lemma 4. Let Mψ be a Goethals-Seidel pseudococyclic matrix, for ψ : GS4t × GS4t → {±1} as described
in Equation (20), and let i, j ∈ GS4t. Then, the set of indices k ∈ GS4t such that σk(i, jk) = −1 are in one to
one correspondence with the ends of the maximal (i, j)-walks (h0, . . . , hr) in H, so that either i(jk) = h0 or
(ij)k = hr.

Proof. In what follows, we refer the reader to Lemma 3 for the notations h− and h+. From Lemma 2,
every index k ∈ GS4t such that σk(i, j) = −1 holds precisely one of the following two assertions.

• i(jk) ∈ H and (ij)k /∈ H. In this case, if we denote h = i(jk) ∈ H, then h− = (ij)k /∈ H and hence,
h constitutes the bottom end of a maximal (i, j)-walk in H.

• i(jk) /∈ H and (ij)k ∈ H. In this case, if we denote h = (ij)k ∈ H, then h+ = i(jk) /∈ H and hence,
h constitutes the upper end of a maximal (i, j)-walk in H.

Notice that the argument works in both directions.

Therefore, the study of Equation (21) may be organized in terms of maximal (i, j)-walks
(h0, . . . , hr), depending on whether ψ(i, jκh0

1 )ψ(i, jκhr
2 ) is equal to 1 or −1. The following result deals

with the second case.

Lemma 5. Under the assumptions of Lemma 4, let (h0, . . . , hr) be a maximal (i, j)-walk in H such that
ψ(i, jκh0

1 )ψ(i, jκhr
2 ) = −1. Then, the ends h0 and hr contribute to Equation (21) with two addends such that

σ
κ

h0
1
(i, j)ψ(i, jκh0

1 ) = −σ
κhr

2
(i, j)ψ(i, jκhr

2 ).

Proof. This is a straightforward consequence from the fact that the ends of a maximal walk provide
negative signs σk, as Lemma 4 indicates.

The case in which the ends of the (i, j)-walk provide a relation ψ(i, jκh0
1 )ψ(i, jκhr

2 ) = 1 needs
a more careful study.
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Lemma 6. Under the assumptions of Lemma 4, let (h0, . . . , hr) be a maximal (i, j)-walk in H such that
ψ(i, jκh0

1 )ψ(i, jκhr
2 ) = 1. Then, precisely one element between jκh0

1 and jκhr
2 is in H. Moreover, it determines

uniquely a new maximal (i, j)-walk in H by means of the left action of i−1.

Proof. Firstly, notice that any two consecutive links h and h+ = i(j((ij)−1h)) (as introduced in
Lemma 3) in any (i, j)-walk in H share a common value ϕ4t(i, i−1h) = ϕ4t(i, i−1h+), because the matrix
S4t is formed by t× t blocks of constant signs (this fact is somehow generalized in Proposition 3).

Secondly, in our case, since the (i, j)-walk (h0, . . . , hr) is maximal in H, we have that
(hr)+ = i(jκhr

2 ) /∈ H. However, i(jκh0
1 ) = h0 ∈ H. Then, it is readily evident from Equation (20) that

∂H(jκh0
1 )∂H(jκhr

2 ) = −1,

where ∂H(z) = −1, if z ∈ H, and 1, otherwise. As a consequence, precisely one of the two elements
i−1h0 = jκh0

1 and i−1(hr)+ = jκhr
2 belongs to H, and hence, a new maximal (i, j)-walk in H containing

such an element is uniquely determined.

Remark 2. Lemma 6 introduces a way to determine a new maximal (i, j)-walk in H from a given maximal
(i, j)-walk (h0, . . . , hr) in H, with ψ(i, jκh0

1 )ψ(i, jκhr
2 ) = 1, by means of the left action of i−1, so that just one of

the ends of the initial (i, j)-walk is projected to the new one. From now on and for simplicity on the exposition,

we say that the (i, j)-walk (h0, . . . , hr) is of type i−1
→ [. . .) (respectively, i−1

→ (. . .]) if it is the bottom end h0

(respectively, the upper end hr), the one that is projected on the new maximal (i, j)-walk in H. Furthermore,
since this left action of i−1 may indeed be applied on any maximal (i, j)-walk in H, we also say that the latter is

of type i−1
→ (. . .) (respectively, i−1

→ [. . .]) if none of its ends is projected (respectively, its both ends are projected)
on the new maximal (i, j)-walk in H.

In order to show how the procedure of determining new maximal (i, j)-walks by means of the left
action of i−1 might be iterated, Proposition 4 describes explicitly such an action on any (i, j)-path of
GS4t. To this end, some preliminary results are required. Notice in this regard that, for any h ∈ GS12

appearing in Example 5, both elements κh
1 and κh

2 are components of the same triple within the set
{At, Bt, Ct, Dt} described in Equations (11)–(14). The same happens for all the components of any
given (a, b)-walk in the mentioned example. Furthermore, notice that the left action of a−1 = a2

somehow preserves these walks. Thus, for instance, since a−1(ac) = c and a−1c = a2c, one has that
the (a, b)-walk (ac, c) is projected on the (a, b)-walk (c, a2c) by means of such an action. The following
results show how these facts may readily be generalized for every Goethals-Seidel loop.

Lemma 7. If i, j, h ∈ GS4t, then there exists an integer m ∈ Zt such that κ
i,j,h
2 = amκ

i,j,h
1 .

Proof. Notice that the product at the level of t× t-blocks within Matrix (10) is that of the group Z2×Z2

(and hence, associative), as we pointed out in Remark 1. As a consequence, both elements κ
i,j,h
1 and

κ
i,j,h
2 appear in the same t× t-block. Then, the result follows readily from Equations (15)–(18).

Proposition 3. Let i, j ∈ GS4t and let (h0, . . . , hr) be an (i, j)-path in a subset of GS4t. Let h, h′ ∈ {h0, . . . , hr}
and s, s′ ∈ {1, 2}. Then, there exist a pair of integers m, m′ ∈ Zt such that h′ = amh and κh

s = am′κh′
s′ .

Proof. It follows readily from Lemma 7 and the notion of path in a subset of a given quasigroup.

Proposition 4. Let (h0, . . . , hr) be an (i, j)-path in a subset of GS4t, with i, j ∈ GS4t. Let α, β, γ ∈ {b, c, d}
be pairwise distinct and let m, n, s ∈ {0, . . . , t− 1}. Then, the following assertions hold.

1. If (i, j, h0) = (am, anα, asβ), with m 6= 0, then the sequence (i−1h0, . . . , i−1hr) also is an (i, j)-path in a
subset of GS4t.
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2. If (i, j) = (amα, anβ) and exactly one of the following four cases holds, then r = 1 and both sequences
(h0, h1) and (i−1h0, i−1h1) are (i, j)-2-cycles in GS4t.

(a) h0 = as, with s 6= 0.
(b) h0 = asα, with s 6= m.
(c) h0 = asβ, with s 6= n.
(d) h0 = asγ, with s 6= 2−m− n.

3. If (i, h0) = (amα, asβ), then the sequence (i−1hr, . . . , i−1h0) also is an (i, j)-path in a subset of GS4t,
whenever

(a) j = an, with n 6= 0; or
(b) j = anα, with n 6= m.

Moreover, every (i, j)-path in a subset of GS4t satisfying none of the previous cases coincides indeed with an
(i, j)-1-cycle.

Proof. Under the assumptions of the first two assertions, one can ensure from Equations (15)–(18) that
(ij)i = j. Then, since (GS4t, ·) is a Moufang loop, we have from Equation (6) that κi−1h

1 = iκh
1 , for all

h ∈ G4t, because
i(j(iκh

1)) = ((ij)i)κh
1 = jκh

1 = i−1h.

Thus, in order to prove each one of the first two assertions, it is enough to check that κ
i−1h`
2 = iκh`

2 ,
for all 0 ≤ ` < r. To this end, we focus on the case ` = 0. The remaining cases follow similarly, because,
from Proposition 3, every h` has the same form (that is, as′ , as′α, as′β or as′γ, with s′ ∈ {0, . . . , t− 1})
than h0.

Concerning the first assertion, we have that κh0
2 = a2−m−n−sγ and hence,

(ij)(iκh0
2 ) = (am · anα)(am · a2−m−n−sγ) = am+nα · a2−n−sγ = as−mβ = a−m · asβ = i−1h0.

Now, concerning the second assertion, we prove separately each one of the four Cases (2a)–(2d).

• In (2a), we have that κh0
2 = a2−m−n−sγ and hence,

(ij)(iκh0
2 ) = (amα · anβ)(amα · a2−m−n−sγ) = a2−m−nγ · an+sβ = am−sα = amα · as = i−1h0.

Further, since κh1
1 = κh0

2 , we have that

h1 = i(jκh1
1 ) = i(jκh0

2 ) = amα(anβ · a2−m−n−sγ) = a−sα.

Notice that h1 6= h0 if and only if s 6= 0. In any case, it holds analogously that h2 = h0 and hence,
both sequences (h0, h1) and (i−1h0, i−1h1) are (i, j)-2-cycles, whenever s 6= 0.

• In (2b), we have that κh0
2 = am+n−sβ and hence,

(ij)(iκh0
2 ) = (amα · anβ)(amα · am+n−sβ) = a2−m−nγ · a2−2m−n+sγ = am−s = amα · asα = i−1h0.

Further,
h1 = amα(anβ · am+n−sβ) = a2m−sα.

Thus, h1 6= h0 if and only if s 6= m. In any case, h2 = h0 and thus, both sequences (h0, h1) and
(i−1h0, i−1h1) are (i, j)-2-cycles, whenever s 6= m.
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• In (2c), we have that κh0
2 = am+n−sα and hence,

(ij)(iκh0
2 ) = (amα · anα)(amα · am+n−sα) = a2−m−nγ · a−n+s = a2−m−sγ = amα · asβ = i−1h0.

Further,
h1 = amα(anβ · am+n−sα) = a2n−sβ.

As a consequence, h1 6= h0 if and only if s 6= n. In any case, h2 = h0 and thus, both sequences
(h0, h1) and (i−1h0, i−1h1) are (i, j)-2-cycles, whenever s 6= n.

• Finally, in (2d), we have that κh0
2 = a2−m−n−s and hence,

(ij)(iκh0
2 ) = (amα · anα)(amα · a2−m−n−s) = a2−m−nγ · a2m+n+s−2α = a2−m−sβ = amα · asγ = i−1h0.

Further,
h1 = amα(anβ · a2−m−n−s) = a4−2m−2n−sγ.

As a consequence, h1 6= h0 if and only if s 6= 2− m − n. In any case, h2 = h0 and thus, both
sequences (h0, h1) and (i−1h0, i−1h1) are (i, j)-2-cycles, whenever s 6= 2−m− n.

Let us focus now on the proof of each one of the two Cases (3a) and (3b) of the third assertion.

• In (3a), we have that κh0
2 = a2−m+n−sγ and hence,

h1 = amα(an · a2−m+n−sγ) = as−2nβ.

Thus, h1 6= h0 if and only if n 6= 0. If this is the case, we have for each ` ∈ {0, . . . , r} that

h` = as−2`nβ, κ
h`
1 = a2−m−s+(2`−1)nγ and κ

h`
2 = a2−m−s+(2`+1)nγ.

In particular, κ
h`
1 = κ

h`−1
2 , for all ` ∈ {1, . . . , r}. Further, we also have for each ` ∈ {0, . . . , r} that

i−1h` = a2−m−s+2`nγ, κ
i−1h`
1 = as−(2`+1)nβ and κ

i−1h`
2 = as−(2`−1)nβ.

Thus, κ
i−1h`
2 = κ

i−1h`−1
1 , for all ` ∈ {1, . . . , r}, and hence, the sequence (i−1hr, . . . , i−1h0) is an

(i, j)-path of a subset of GS4t.

• In (3b), we have that κh0
2 = as−m+nβ and hence,

h1 = amα(anα · as−m+nβ) = as−2(m−n)β.

Thus, h1 6= h0 if and only if n 6= m. If this is the case, we have for each ` ∈ {0, . . . , r} that

h` = as−2`(m−n)β, κ
h`
1 = as−(2`−1)(m−n)β and κ

h`
2 = as−(2`+1)(m−n)β.

In particular, κ
h`
1 = κ

h`−1
2 , for all ` ∈ {1, . . . , r}. Further, we also have for each ` ∈ {0, . . . , r} that

i−1h` = a2−s−m+2`(m−n)γ, κ
i−1h`
1 = a2−s−n+2`(m−n)γ and κ

i−1h`
2 = a2−s−n+2(`−1)(m−n)γ.

Thus, κ
i−1h`
2 = κ

i−1h`−1
1 , for all ` ∈ {1, . . . , r}, and hence, the sequence (i−1hr, . . . , i−1h0) is an

(i, j)-path of a subset of GS4t.
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Finally, in order to finish the proof of the last statement of the proposition, it is enough to observe
that, for each one of the cases that have not still been considered in the current proof, we have that
h` = i(jκh`

2 ) = (ij)κh`
2 = (ij)κh`+1

1 = h`+1, for all ` ∈ {0, . . . , r− 1}.

We are now in conditions to complete the study of Equation (21). To this end, we aim to prove
that, under the assumptions of Lemma 6, the pair of ends (κh0

1 , κhr
2 ) is uniquely related to another pair

of different ends (κh′0
1 , κ

h′s
2 ) delimiting a maximal (i, j)-walk (h′0, . . . , h′s) in H such that

ψ(i, jκh′0
1 ) = ψ(i, jκh′s

2 ) = −ψ(i, jκh0
1 ) = −ψ(i, jκhr

2 ). (23)

This new (i, j)-walk is obtained from the initial one after a finite number of projections by means
of the left action of i−1. As commented in Remark 2, for the sake of reading, we make use of brackets
and parenthesis for noting which one of the ends of the initial (i, j)-walk are projected onto the new
(i, j)-walk by means of the action of i−1.

As a final remark, it is convenient to recall that the map ψ of Equation (20) is described as the
product of some pseudocoboundaries ψh (those ones that are indexed by the set H) and a cocycle ϕ4t
(whose matrix representation is S4t, consisting of t× t-blocks of constant signs). Therefore, checking
Equation (23) might eventually require calculating the value of each one of these factors.

In light of Proposition 4, we may distinguish three different cases, depending on the values of the
triple (i, j, h). These cases are studied separately in Lemmas 8–10.

Lemma 8. Under the assumptions of Lemma 6 and Proposition 4 list 1, a maximal (i, j)-walk (h′0, . . . , h′s) in
H exists such that Equation (23) holds.

Proof. Two subcases arise depending on the type (i−1
→ [. . .) or i−1

→ (. . .]) of the initial (i, j)-walk.

1. If the (i, j)-walk (h0, . . . , hr) is of type i−1
→ [. . .), then its projected maximal (i, j)-walk by means

of the left action of i−1 must be of type either i−1
→ (. . .] or i−1

→ [. . .]. This is due to the fact that
i−1(i−1h) = h+, for all h ∈ GS4t, because i = am, with m 6= 0.

In the particular case in which the bottom end is projected (that is, in case of dealing with the

type i−1
→ [. . .]), it constitutes a foothold to keep on applying once more time the action of i−1.

This procedure may be iterated until a projection is achieved providing a maximal (i, j)-walk

(h′0, . . . , h′s) of type i−1
→ (. . .].

2. Similarly, if the (i, j)-walk (h0, . . . , hr) is of type i−1
→ (. . .], then its projected maximal (i, j)-walk by

means of the left action of i−1 is necessarily of type either i−1
→ [. . .) or i−1

→ [. . .] .

In the particular case in which the upper end is projected (that is, in case of dealing with the

type i−1
→ [. . .]), it constitutes a foothold to keep on applying the action of i−1. This process may

be iterated until a projection is achieved providing a maximal (i, j)-walk (h′0, . . . , h′s) of the type
i−1
→ [. . .).

In both subcases, the iterative procedure finishes, because the subset H is finite and all the
resulting (i, j)-walks are uniquely determined by Lemma 6. Whichever is the case, a maximal (i, j)-walk
(h′0, . . . , h′s) in H exists, which preserves the complementary end as compared with the initial projected
walk. This implies that

∏
h∈H

ψh(i, i−1h0) = − ∏
h∈H

ψh(i, i−1h′0).

Since i = am, it must be ϕ4t(i, i−1h0) = ϕ4t(i, i−1h′0), and hence, Equation (23) holds.
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Lemma 9. Under the assumptions of Lemma 6 and Proposition 4 list 2, a maximal (i, j)-walk (h′0, . . . , h′s) in
H exists such that Equation (23) holds.

Proof. Attending to Proposition 4, we start from a maximal (i, j)-1-walk (h0). Furthermore, no matter
which among the bottom or the upper end is projected, the projected walk (h′0) = (i−1h0) is of the
same type as the initial one. Hence,

∏
h∈H

ψh(i, i−1h0) = ∏
h∈H

ψh(i, i−1h′0).

However, taking into account the possible values for (i, h), we have that ϕ4t(i, i−1h0) =

−ϕ4t(i, i−1h′0), and hence, Equation (23) holds.

Lemma 10. Under the assumptions of Lemma 6 and Proposition 4 list 3, a maximal (i, j)-walk (h′0, . . . , h′s) in
H exists such that Equation (23) holds.

Proof. This case follows analogously to that of Lemma 8. In particular, once again, two subcases arise

depending on whether the bottom or the upper end is projected. No matter i−1
→ [. . .) or i−1

→ (. . .] is the
case, it is readily checked that under a new action of i−1, any of the (i, j)-walks in Proposition 4 list 3
projects to another maximal (i, j)-walk that preserves the opposite end. This is due to the reverse
property described in such a proposition.

If the other end is eventually preserved as well, it constitutes a foothold to keep on applying once
more time the left action of i−1. This procedure may be iterated until a projection is achieved providing
a maximal (i, j)-walk (h′0, . . . , h′s) for which precisely one end is projected by the action of i−1.

The iterative procedure finishes because of being H finite. Furthermore, depending on the parity
of the number n of developed projections, one of the following two assertions hold.

• Either h′0 = amh0 and the walks preserve different ends; which implies that

ϕ4t(i, i−1h0) = ϕ4t(i, i−1h′0)

and

∏
h∈H

ψh(i, i−1h0) = − ∏
h∈H

ψh(i, i−1h′0).

• Or h′0 = am(i−1h0) and the walks preserve the same ends; which implies that

ϕ4t(i, i−1h0) = −ϕ4t(i, i−1h′0)

and

∏
h∈H

ψh(i, i−1h0) = ∏
h∈H

ψh(i, i−1h′0).

In any case, Equation (23) holds.

The following result is a straightforward consequence of Lemmas 5 and 8–10.

Lemma 11. Under the assumptions of Lemma 6, and attending to Equation (21), the set of indices d ∈ GS4t such
that σd(i, j) = −1 may be organized into pairs (k, k′) uniquely determined such that ψ(i, jk)ψ(i, jk′) = −1.

Finally, the following lemma supports the sufficient condition of the cocyclic test over
Goethals-Seidel arrays, which we show in Theorem 1.
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Lemma 12. Under the assumptions of Lemma 6, Equation (21) holds if and only if the summation of row i in
the pseudococyclic matrix Mψ is 0.

Proof. In order to prove that

∑
k∈GS4t

ψ(i, jk)σk(i, j) = ∑
k∈GS4t

ψ(i, k), (24)

it suffices to show that both expressions share the same amount of positive and negative addends.
Observe in this regard that, if k ∈ GS4t is such that σk(i, j) = 1, then the corresponding addends at
both sides of Equation (24) are obviously equal. Hence, we can focus on those elements k ∈ GS4t such
that σk(i, j) = −1. However, Lemma 11 guarantees that such addends come by pairs, which provide
summands having opposite signs.

We are ready to prove that the usual cocyclic test still applies over Goethals-Seidel arrays.

Theorem 1. Let us consider a positive integer t > 2. The Goethals-Seidel array of order 4t is Hadamard if
and only if the underlying pseudococyclic matrix Mψ of Equation (20) over the Goethals-Seidel loop (GS4t, ·)
satisfies the cocyclic Hadamard test.

Proof. In the proof of Proposition 2, we noticed that the Goethals-Seidel array of order 4t is Hadamard
equivalent to the matrix Mψ. Since the latter is normalized, a necessary condition for Mψ being
Hadamard is that the summation of all the elements of its rows (but the first one) is zero, which gives
rise to the “only if” condition of the hypothesis. On the other hand, Lemma 12 supports the
sufficient condition.

Example 6. The pseudococycle ψ = ψ2ψ5ψ8S12 gives rise to the following pseudococyclic matrix Mψ

over GS12,

Mψ =



+ + + + + + + + + + + +

+ + − − + + − + + − − −
+ − − − − + − − + + + +

+ + + − − − + − + + − −
+ + − + − − − + − + + −
+ − − + + − + − + − + −
+ + + − + − − − − − + +

+ + − + − + + − − − − +

+ − − − + − + + − + − +

+ − + − − + + + − − + −
+ − + + − − − + + − − +

+ − + + + + − − − + − −



.

Since every row (but the first) sums zero, the matrix Mψ is Hadamard.

Remark 3. The fact that the summation of every row (up to the first) equals zero in the pseudococyclic matrix
Mψ is equivalent to Equation (4), for G = Zt. To this end, one takes into account that, for each i ∈ GS4t \ {e},
the i-row of any pseudocoboundary matrix Mψh consists of two negative entries, which are located precisely
at the h- and the i−1h-columns (except for the h-row, which consists all of −1 s, up to entries at the 1- and
h-columns).

5. Conclusions and Further Work

Beyond the work of some of the authors in [12], this paper progresses on the idea of extending
the theory of cocyclic matrices over groups, focusing on quasigroups. More specifically, we introduce
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here the concepts of pseudocoboundary and pseudococycle over a quasigroup, and also the notion of
the pseudococyclic Hadamard matrix.

We have also provided some general structures that might be used for studying pseudococyclic
matrices over quasigroups. This is the case of (i, j)-walks.

In particular, Goethals-Seidel arrays have been shown to be pseudococyclically developed over
Goethals-Seidel loops. Furthermore, no matter if they are pseudococyclic matrices, the usual cocyclic
Hadamard test has been shown to be unexpectedly applicable. Notice that this is an unusual fact,
as Example 4 shows.

It is an open question whether some assumption may be imposed in order to generalize this
behavior to other families of loops (either Moufang as well or not).

The door to promising new tools for looking for (pseudo)cocyclic Hadamard matrices over loops
is open. In particular, the following major problems might be considered.

• Show whether these new (pseudo)cocyclic structures strictly extend the usual cocyclic framework,
in the sense that some Hadamard equivalence classes which are known not to be cocyclic over
groups are actually (pseudo)cocyclic over some loops.

• Construct some new Hadamard matrices (pseudo)cocyclically developed over loops of orders for
which no (cocyclic) Hadamard matrix is still known to exist.

This will be the concern of our future work.
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