7 research outputs found

    Improving Fingerprint Verification Using Minutiae Triplets

    Get PDF
    Improving fingerprint matching algorithms is an active and important research area in fingerprint recognition. Algorithms based on minutia triplets, an important matcher family, present some drawbacks that impact their accuracy, such as dependency to the order of minutiae in the feature, insensitivity to the reflection of minutiae triplets, and insensitivity to the directions of the minutiae relative to the sides of the triangle. To alleviate these drawbacks, we introduce in this paper a novel fingerprint matching algorithm, named M3gl. This algorithm contains three components: a new feature representation containing clockwise-arranged minutiae without a central minutia, a new similarity measure that shifts the triplets to find the best minutiae correspondence, and a global matching procedure that selects the alignment by maximizing the amount of global matching minutiae. To make M3gl faster, it includes some optimizations to discard non-matching minutia triplets without comparing the whole representation. In comparison with six verification algorithms, M3gl achieves the highest accuracy in the lowest matching time, using FVC2002 and FVC2004 databases

    Detección de anomalías en grandes volúmenes de datos

    Get PDF
    El desarrollo de la era digital ha traído como consecuencia un incremento considerable de los volúmenes de datos. A estos grandes volúmenes de datos se les ha denominado big data ya que exceden la capacidad de procesamiento de sistemas de bases de datos convencionales. Diversos sectores consideran varias oportunidades y aplicaciones en la detección de anomalías en problemas de big data.  Para realizar este tipo de análisis puede resultar muy útil el empleo de técnicas de minería de datos porque permiten extraer patrones y relaciones desde grandes cantidades de datos. El procesamiento y análisis de estos volúmenes de datos, necesitan de herramientas capaces de procesarlos como Apache Spark y Hadoop. Estas herramientas no cuentan con algoritmos específicos para la detección de anomalías. El objetivo del trabajo es presentar un nuevo algoritmo para la detección de anomalías basado en vecindad para de problemas big data. A partir de un estudio comparativo se seleccionó el algoritmo KNNW por sus resultados, con el fin de diseñar una variante big data. La implementación del algoritmo big data se realizó en la herramienta Apache Spark, utilizando el paradigma de programación paralela MapReduce. Posteriormente se realizaron diferentes experimentos para analizar el comportamiento del algoritmo con distintas configuraciones. Dentro de los experimentos se compararon los tiempos de ejecución y calidad de los resultados entre la variante secuencial y la variante big data. La variante big data obtuvo mejores resultados con diferencia significativa. Logrando que la variante big data, KNNW-BigData, pueda procesar grandes volúmenes de datos

    Citelivepro 2.0: programa para la organización bibliográfica

    Get PDF
    A system is developed to offer a service of bibliographical organization in Web set. CiteLivePro 2.0 have a system for the visualization of databases to fool text, allows the search for the 45 fields in that the sources of information can be described to register in the same one. The fundamental easiness of the system is the one of allowing the on-line addition of new norms of bibliographical cataloguing by Web. With this system it will implement in the Cuban portal for the vegetable biotechnology a service again type using a programming in three layers and taking advantage of the advantages of the XML like exchange format and representation

    Detección de anomalías en grandes volúmenes de datos

    No full text
    The development of the digital age has resulted in a considerable increase in data volumes. These large volumes of data have been called big data since they exceed the processing capacity of conventional database systems. Several sectors consider various opportunities and applications in the detection of anomalies in big data problems. This type of analysis can be very useful the use of data mining techniques because it allows extracting patterns and relationships from large amounts of data. The processing and analysis of these data volumes need tools capable of processing them as Apache Spark and Hadoop. These tools do not have specific algorithms for detecting anomalies. The general objective of the work is to develop a new algorithm for the detection of neighborhood-based anomalies in big data problems. From a comparative study, the KNNW algorithm was selected by its results, in order to design a big data variant. The implementation of the big data algorithm was done in the Apache Spark tool, using the parallel programming paradigm MapReduce. Subsequently different experiments were performed to analyze the behavior of the algorithm with different configurations. Within the experiments, the execution times and the quality of the results were compared between the sequential variant and the big data variant. Getting better results, the big data variant with significant difference. Getting the big data variant, KNNW-BigData, can process large volumes of data. Keywords: big data; data mining; detecting anomalies; MapReduce.El desarrollo de la era digital ha traído como consecuencia un incremento considerable de los volúmenes de datos. A estos grandes volúmenes de datos se les ha denominado big data ya que exceden la capacidad de procesamiento de sistemas de bases de datos convencionales. Diversos sectores consideran varias oportunidades y aplicaciones en la detección de anomalías en problemas de big data.  Para realizar este tipo de análisis puede resultar muy útil el empleo de técnicas de minería de datos porque permiten extraer patrones y relaciones desde grandes cantidades de datos. El procesamiento y análisis de estos volúmenes de datos, necesitan de herramientas capaces de procesarlos como Apache Spark y Hadoop. Estas herramientas no cuentan con algoritmos específicos para la detección de anomalías. El objetivo del trabajo es presentar un nuevo algoritmo para la detección de anomalías basado en vecindad para de problemas big data. A partir de un estudio comparativo se seleccionó el algoritmo KNNW por sus resultados, con el fin de diseñar una variante big data. La implementación del algoritmo big data se realizó en la herramienta Apache Spark, utilizando el paradigma de programación paralela MapReduce. Posteriormente se realizaron diferentes experimentos para analizar el comportamiento del algoritmo con distintas configuraciones. Dentro de los experimentos se compararon los tiempos de ejecución y calidad de los resultados entre la variante secuencial y la variante big data. La variante big data obtuvo mejores resultados con diferencia significativa. Logrando que la variante big data, KNNW-BigData, pueda procesar grandes volúmenes de datos

    A Pattern-Based Approach for Detecting Pneumatic Failures on Temporary Immersion Bioreactors

    No full text
    Temporary Immersion Bioreactors (TIBs) are used for increasing plant quality and plant multiplication rates. These TIBs are actioned by mean of a pneumatic system. A failure in the pneumatic system could produce severe damages into the TIB. Consequently, the whole biological process would be aborted, increasing the production cost. Therefore, an important task is to detect failures on a temporary immersion bioreactor system. In this paper, we propose to approach this task using a contrast pattern based classifier. We show that our proposal, for detecting pneumatic failures in a TIB, outperforms other approaches reported in the literature. In addition, we introduce a feature representation based on the differences among feature values. Additionally, we collected a new pineapple micropropagation database for detecting four new types of pneumatic failures on TIBs. Finally, we provide an analysis of our experimental results together with experts in both biotechnology and pneumatic devices

    Citelivepro 2.0: Programa para la Organización Bibliográfica

    No full text
    Se desarrolla un software para brindar un servicio de organización bibliográfica en ambiente Web. CiteLivePro 2.0 cuenta con un sistema para la visualización de bases de datos a texto completo y permite la búsqueda por los 45 campos en que pueden describirse las fuentes de información a registrar en el mismo. La facilidad fundamental del  sistema consiste en que admite la adición en línea de nuevas normas de catalogación bibliográfica vía Web. Con este sistema se implementó un servicio de nuevo tipo en el portal cubano para la biotecnología vegetal, utilizando una programación en tres capas y aprovechando las ventajas del XML como formato de intercambio y representación
    corecore